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ABSTRACT
Massive open online courses (MOOCs), one of the latest
internet revolutions have engendered hope that constant it-
erative improvement and economies of scale may cure the
“cost disease” of higher education. While scalable in many
ways, providing feedback for homework submissions (par-
ticularly open-ended ones) remains a challenge in the online
classroom. In courses where the student-teacher ratio can be
ten thousand to one or worse, it is impossible for instructors
to personally give feedback to students or to understand the
multitude of student approaches and pitfalls. Organizing
and making sense of massive collections of homework solu-
tions is thus a critical web problem. Despite the challenges,
the dense solution space sampling in highly structured home-
works for some MOOCs suggests an elegant solution to pro-
viding quality feedback to students on a massive scale.

We outline a method for decomposing online homework
submissions into a vocabulary of “code phrases”, and based
on this vocabulary, we architect a queryable index that al-
lows for fast searches into the massive dataset of student
homework submissions. To demonstrate the utility of our
homework search engine we index over a million code sub-
missions from users worldwide in Stanford’s Machine Learn-
ing MOOC and (a) semi-automatically learn shared struc-
ture amongst homework submissions and (b) generate spe-
cific feedback for student mistakes.

Codewebs is a tool that leverages the redundancy of densely
sampled, highly structured homeworks in order to force-
multiply teacher effort. Giving articulate, instant feedback
is a crucial component of the online learning process and
thus by building a homework search engine we hope to take
a step towards higher quality free education.
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1. MASSIVE SCALE COMPUTER SCIENCE
EDUCATION

In the last few years, MOOCs have begun offering educa-
tional opportunities at zero cost to anyone with an internet
connection [16]. People of all ages from all over the world
are increasingly turning to online resources to learn, and
as a result, the sheer amount of data collected about stu-
dent learning has grown astronomically, eclipsing previous
records. The growth of free access education and the increas-
ing demand for higher education, especially in Science, Tech-
nology, Engineering and Math, motivates the need, more
than ever, to organize the enormous amount of collected
student data in an intelligent way so that we can search the
data and find patterns in order to benefit both students and
instructors.

Search engines for student submitted content. With
the amount of collected student content increasing at a grow-
ing rate and the lines between formal classroom learning and
informal online learning quickly blurring, search engines for
student submitted content seem inevitable, and potentially
enormously valuable. These search engines would allow one
to explore a massive number of homework submissions by
efficiently retrieving submissions matching specific criteria.
Students would then benefit by being able to look for other
students who think alike, to see how students with different
viewpoints think, to find alternative strategies of approach-
ing a homework problem, or simply to browse other work
for inspiration. Instructors, on the other hand, would also
benefit by being able to query a search engine in order to
look for submissions of a particular type or even to count
the number of students who submitted the same or a simi-
lar class of solutions.

While search engines for code have existed for a number
of years (see [17, 24, 11, 12]), the nature of MOOC datasets
makes for a setting that is quite distinct from that of typi-
cal code search. In the MOOC setting there is significantly
more structure, since (1) submissions often take the form of
single unit-testable functions written in a single language,
and (2) all students submit attempts of the same problem
at the same time. Due to this similarity between many sub-
missions, it is possible to exploit the shared structure of mul-
tiple submissions in several ways. For example, this shared
structure allows one to reason about the semantics of code
and the intentions of the programmer.

The Codewebs engine that we propose in this paper is built
around a massive index over the existing student code sub-
missions which can be searched using a variety of queries and



supports a number of possible applications such as (but not
limited to) finding alternative implementations, mining com-
mon approaches and misconceptions, and providing person-
alized feedback. Codewebs is designed to be highly scalable,
allowing us to find and leverage shared structure amongst
submitted programs and is able to reason about semanti-
cally similar student code. The main power of our system
stems from its ability to tailor the way it deals with code
semantics to each homework problem individually. Specifi-
cally, we utilize existing data to learn about each homework
problem rather than requiring an excessive amount of hu-
man effort for each problem. Finally, the Codewebs system
is designed so as to be easily portable to diverse program-
ming assignments and to different programming languages
remaining cognizant to the fact that instructor time is a
limited resource.

Delivering scalable human feedback. Instructor time
is also a limiting factor in delivering feedback to students,
which is critical for learning. With the number of engaged
students in a MOOC commonly exceeding ten thousand,
many benefits of face-to-face instruction are easily lost. Even
despite the fact that programs can be checked for correct-
ness (i.e., unit-tested) automatically, coding assignments are
complex in that they can be approached with a multitude
of algorithms or strategies and typically require creativity.
Thus in many coding problems, students can benefit from
more feedback than a binary “correct vs. incorrect”. It is
difficult, however, to gauge student understanding without
being able to personally peruse through tens of thousands of
code submissions. And it is consequently difficult to grade
student work, to provide detailed student feedback, or re-
spond to individual questions.

Detailed assignment feedback is in general neither easily
automated or even appropriate for typical crowd-sourcing
platforms such as Mechanical Turk since graders are re-
quired to have a certain level of expertise. One proposed
solution (pursued, for example, by the Coursera platform)
has been to use peer grading instead, allowing students to
grade each other. While peer grading has shown signs of
initial success, it also suffers from a number of limitations
including inconsistencies and biases amongst peer graders
as well as sometimes an unwillingness or inability to provide
high quality and constructive feedback [18].

Our method for providing scalable human feedback de-
rives from the observation that even though there may be
many thousands of unique submissions to an open-ended
programming assignment the diversity reflects a much smaller
number of compounded student-decision points. By recog-
nizing “shared parts” of student solutions and decoupling
different decisions, instructor feedback can be force multi-
plied. The idea behind our tool is to have an instructor
provide detailed feedback only on a handful of submissions
which we can intelligently propagate to new solutions via un-
derlying assignment structure learned using our homework
search engine. We aim to create a system where a teacher
can provide detailed feedback for thousands of students with
the same effort that she would spend in an ordinary college
course.

The strategy of propagating teacher feedback aligns with
our view that human instructors have a key role to play in
the future digital classroom. Seamlessly incorporating hu-
man feedback into the loop bridges the gap between the

# submissions in total 1,008,764
# coding problems 42

Average # submissions per problem 24,018
Average # students submitting per problem 15,782

Average # of lines per submission 16.44
Average # of nodes per AST 164

Table 1: Statistics of the ML class dataset.

typical MOOC experience and the small classroom experi-
ence. Finally, because our system discovers the commonal-
ities amongst student submissions using the corpus of stu-
dents submissions, adding more student data to our data
bank will improve our statistical confidence and coverage, al-
lowing us to provide meaningful feedback to more students,
detect more classes of conceptual errors, and generally im-
prove the utility of our system.

Overview of main contributions. To summarize, we
propose in this paper a novel system, Codewebs, for search-
ing through code submissions to a programming intensive
MOOC as well as a methodology for scalably providing hu-
man level feedback to students in the MOOC. The main
technical innovations that we have developed are as follows.

• We propose an efficient method for indexing code by
“code phrases” corresponding to constituent parts of
code submissions to a massive scale programming course.
In particular, we introduce a novel way to query for
the surroundings, or context of a code phrase, which
allows us to reason about the behavior of code within
its context.

• We develop a data driven approach for automatically
finding semantically equivalent code phrases. In par-
ticular we introduce a notion of probabilistic semantic
equivalence allowing us to connect syntax with seman-
tics and to compare code with respect to both.

• We demonstrate applications of our search index such
as bug finding (without having to execute code) and
allowing a human instructor to provide feedback at
MOOC scales.

• We demonstrate the scalability of the Codewebs en-
gine and show results on code submissions to a real
MOOC, Stanford’s machine learning course, which had
over 120,000 students enrolled worldwide, who submit-
ted over a million code submissions in total. We also
explore the variability of this dataset, showing in par-
ticular that the frequency counts of student submitted
code phrases for a single programming problem follow
a Zipf law distribution despite the fact that all sub-
missions are implementations of the same function.

2. DATA FROM A PROGRAMMING INTEN-
SIVE MOOC

We showcase our Codewebs system using data collected
from Stanford’s online machine learning (ML) Class (taught
by Andrew Ng), which opened in October 2011 with over
120,000 students registering. Over the duration of the course,
over 25,000 students submitted at least one assignment, and
10,405 students submitted solutions to all 8 homework as-
signments. Each assignment had multiple parts (which com-
bined for a total of 42 coding problems), in which students
were asked to implement algorithms covered in lectures such



function [theta, J_history]  
 = gradientDescent(X, y, theta, alpha, num_iters) 

 
%GRADIENTDESCENT gradient descent to learn theta 
%  updates theta by taking num_iters gradient  
%  steps with learning rate alpha. 
 
m = length(y); % number of training examples 
J_history = zeros(num_iters, 1); 
 
for iter = 1:num_iters 
    theta = theta-alpha*1/m*(X'*(X*theta-y)); 
    J_history(iter) = computeCost(X, y, theta); 
end 

(a)

BINARY_EXP (*) 

POSTFIX (‘) BINARY_EXP (-) 

IDENT (X) IDENT (y) BINARY_EXP (*) 

IDENT (X) IDENT (theta) 

(b)

BINARY_EXP (*) 

IDENT (X) IDENT (theta) 

(c)

BINARY_EXP (*) 

POSTFIX (‘) BINARY_EXP (-) 

IDENT (X) IDENT (y) 

replacement 
site 

(d)

Figure 1: (a) Example code submission to the “Gradient descent (for linear regression)” problem; (b) Example
abstract syntax tree for linear regression gradient expression: X ′ ∗ (X ∗ θ − y); (c) Example subtree from the
AST from Figure 1(b); (d) Context of the subtree with respect to the same AST. Note the additional node
denoting the “replacement site” of the context.

as regression, neural networks and support vector machines.
Code for the ML class was predominantly written in Oc-
tave, a high level interpreted language similar to MATLAB,
and the submissions collectively covered nearly all of Oc-
tave’s basic language features. Submissions to the course
website were assessed via a battery of unit tests where the
student programs were run with standard input and assessed
on whether they produced the correct output. We remark
that high level languages such as Octave are fairly popular
for instruction because they allow a student to ignore many
of the low level frustrations associated with programming
and concentrate on the more important higher level con-
cepts. But they are also harder languages to automatically
analyze due to their more flexible syntax and dynamic typ-
ing. As we show in this paper, data driven methods give us
a way to effectively analyze submissions in such languages.

Figure 1(a) shows a correct attempt at the “Gradient de-
scent (for linear regression)” problem assigned in the first
homework. In this problem, students were asked to find a
linear predictor of the output vector y based on the input
matrix X. Throughout the paper, we will use this linear
regression coding problem as a running example.

The Codewebs engine allows us to efficiently query this
massive collection of code submissions from Stanford’s ML
class, all of which attempt to implement the same function-
ality. With so many submissions of the same programming
problem, we are able to obtain a dense sampling of the solu-
tion space, in which we observe almost every conceivable way
of approaching the problem both correctly and incorrectly.
The dataset is thus perfect for highlighting the advantages
of Codewebs which is able to exploit large amounts of data
to do things that would be much more difficult to accom-
plish otherwise. At the same time, a massive course such as
ML class can greatly benefit from a detailed student feed-
back tool, making our dataset also ideal for demonstrating
the applicability of Codewebs. More statistics of our dataset
are summarized in Table 1.

Structured representations of syntax. In addition to a
string representation of each student’s code submission, we
parse each student submission into an abstract syntax tree
(AST) representation. Each AST (which is equivalent to
that created internally by the Octave software [3]) is stored
explicitly in our database in JSON format. An example AST
is depicted in Figure 1(b). Running on the ML class dataset,
our parser accepts over 99.5% of submitted code, failing in a
small percentage of cases (often due to submissions in differ-
ent languages such as Python or MATLAB), which we dis-
card from the dataset. Nodes in our ASTs are specified by

a type (e.g., STATEMENT, ASSIGN) and an optional name
(e.g., X, theta, gradient). Other than the statement and
identifier nodes, we do not assume any specific knowledge of
the semantic meanings of node types.

Reasoning with abstract syntax trees instead of the orig-
inal source code allows the Codewebs system to effectively
ignore cosmetic idiosyncrasies in whitespace, comments, and
to some extent, differences in variable names. We find in
many cases that multiple submissions that are distinct as
code strings can correspond to the same AST. Thus after
parsing, we retain just over half a million distinct ASTs
from the original million submissions along with the num-
ber of occurrences of each unique AST.

3. EFFICIENT INDEXING OF CODE SUB-
MISSIONS

What basic queries or items should a code search engine
index? If we viewed code simply as a string, it would be
reasonable to query by terms, or phrases or regular expres-
sions, but with the additional tree structure of our ASTs,
we can go beyond traditional “flat” queries. The Codewebs
engine accepts basic queries in the form of what we call code
phrases, subgraphs of an AST which take three forms: sub-
trees, subforests, and contexts, which we now define. In the
following, consider any AST denoted by A:

[Subtrees] Subtrees represent the most basic form of code
phrases and are specified by a single node a in AST A and
contain all descendants of a. If an AST B is a subtree of AST
A, we write B ≤ A. When referring to a specific subtree
rooted at a node a of an AST, we write A[a].

[Subforests] In addition to subtrees, we consider subforests
which capture everything in a contiguous sequence of state-
ments. Specifically, we define a subforest to be a consecu-
tive sequence of statement subtrees (i.e., subtrees rooted at
STATEMENT nodes).

[Context] Because the function of a code snippet generally
depends strongly on the surrounding region of code in which
it appears, we also allow for these surroundings to be directly
queried by our engine. Formally, we define the context of a
subtree A[a] within a larger subtree A[a′] of the same AST
to be the subgraph of A[a′] which does not contain anything
in A[a] to which we add an additional leaf attached to the
parent of a, representing the “replacement site” where other
subtrees could potentially be swapped in. For example, the
context of the body of a for-loop with respect to the subtree
rooted at that for-loop contains a variable and expression
specifying termination conditions. We denote the context



by A[a′]\A[a]. Figure 1(c) shows an example subtree with
its corresponding context (Figure 1(d)). We also refer to
two special types of contexts:

• Given AST A and subtree A[a], the global context of
A[a] with respect to A (written A\A[a]) refers to the
tree obtained by removing A[a] from A.

• Given a subtree A[a] rooted at node a in AST A,
the local context of A[a] with respect to A (written
A[p[a]]\A[a]) is the context of A[a] within the subtree
rooted at a’s parent.

Building an inverted index. We now describe the con-
struction of the inverted index at the heart of the Codewebs
system, associating possible code phrases of the above three
types to lists of ASTs in the database which contain those
phrases. For simplicity, we only consider exact code phrase
matches in this section and defer the general case to Sec-
tion 4. While traditional search engines [27] typically do
not index arbitrarily long phrases, it makes sense in the stu-
dent code setting to index with respect to all possible code
phrases defined above since (1) student code submissions
are typically limited in length (see Table 1), and since (2)
virtually all of the submissions attempt to implement the
same functionality, resulting in many ASTs sharing large
code phrases.

The inverted index is incrementally constructed by adding
one AST at a time as follows. We first preprocess all ASTs
by anonymizing identifiers that are not recognized as re-
served Octave identifiers or as those belonging to the pro-
vided starter code for the assignment. Then for each AST A
in the data, we extract all relevant code phrases by iterating
over all subtrees, all consecutive sequences of statements,
and their respective global contexts. For each code phrase,
we append A to its corresponding list in the inverted in-
dex (or start a new list containing A if the code phrase was
not already contained in the index). Since we consider all
possible code phrases and allow them to be arbitrarily large
in size, näıvely building the index would be computationally
expensive. In the following, we describe a scalable index con-
struction algorithm based on an efficient hashing approach.

3.1 Efficient matching
Our inverted index is implemented as a hash table. To

efficiently query the index, we compute hash codes for each
code phrase by hashing the list obtained via a postorder
traversal of its nodes. Specifically, given an AST A with
nodes a0, . . . ,am−1 (the postorder of A), we hash A via the
function: H(A) = pm +

∑m−1
i=0 pm−i−1h(ai), where p is a

prime number and h(a) can be any hash function encoding
the type and name of the node a. Code phrases (whose
nodes can similarly be postordered) are hashed using the
same function. We note that phrases that share the same
postorder (despite being structurally distinct) are guaran-
teed to collide under H, but in practice, we find that it
works sufficiently well (perhaps because it is unlikely for
two distinct ASTs to simultaneously meet the constraints
of sharing a postorder traversal and corresponding to valid
source code).

Efficient precomputation of hashes. By exploiting the
particular structure of the hash function H, we can effi-
ciently precompute hash codes for all code phrases within an
AST. We explicitly maintain a serialized representation of
each AST A in our dataset as a flat array LA = [[`1, . . . , `m]]

where the ith entry of L corresponds to the ith node (ai) of
the postorder of A. We record node type and name in each
entry `i as well as the size (i.e., number of nodes) of the sub-
tree A[ai] (which we denote by |A[ai]|). Note that with size
information, the original AST is uniquely determined by the
flat array of nodes (and it is thus possible to check for exact
matches between ASTs), but we ignore sizes during hashing.

The advantage of representing an AST A as a serialized
list LA is that each of the code phrases appearing in A can
be similarly represented, and in fact, directly constructed as
a contiguous subsequence of entries of LA. In particular, the
subtree A[ai] corresponds precisely to the nodes in the con-
tiguous subsequence: [[`i−|A[ai]|+1, . . . , `i]]. Serialized repre-
sentations of subforests similarly correspond to contiguous
subsequences of LA. Obtaining a serialized representation
of a context is only slightly more complicated. Given the
context A[a′]\A[a], we take the subsequence of LA corre-
sponding to the larger subtree A[a′] but replace the entries
corresponding to the smaller subtree A[a] with a single entry
denoting the replacement site node.

Together with the simple additive structure of our hash
function H, the fact that all code phrases can be read off as
contiguous subsequences, lends itself to a simple dynamic
programming approach for precomputing all code phrase
hashes of an AST in a single pass. Specifically, if we store
the hashes of all prefixes of the postorder list (as well as
all relevant powers of the prime used in the hash), we can
compute the hash of any sublist in constant time, with:
H([[`i, . . . , `j ]]) = H([[`0, . . . , `j ]])− pj−i+1

(H([[`0, . . . , `i−1]])− 1).

Since every code phrase contains at most two sublists from
the postorder of the original AST, the hash for each code
phrase can be computed in constant time using O(m) pre-
computation time and additional storage. The same rea-
soning allows us to represent each code phrase as a view
into subregions of the original AST. Thus we only require a
constant amount of additional storage per code phrase.

4. DATA DRIVEN DISCOVERY OF SEMAN-
TIC EQUIVALENCE CLASSES

One of the main difficulties in matching source code is
that there are always many syntactically distinct ways of
implementing the same functionality. For example, where
one student might use a for-loop, another might equivalently
use a while-loop, and if we were to require exact syntactic
matches between code phrases (as was assumed in the pre-
vious section), we would not be able to capture the fact that
the two submitted implementations were highly similar.

To address the issue of non-exact matches, some authors
have turned to a softer notion of matching between ASTs
such as tree edit distance (see [22]). But this approach,
which has been used in works on generic code search as well
as tutoring systems [12, 10, 21] is based only on syntax and is
not able to directly capture semantic equivalence. Another
more direct approach is to rely on canonicalization ([17, 25,
20, 21]) in which one applies semantic preserving transfor-
mations to the AST in order to reduce it to something more
likely to match with other code in the database. Rivers et
al. [20], for example, collapse constant functions, and use de
Morgan’s laws to normalize boolean expressions (among a
number of other canonicalizations).

While canonicalization can be useful, it is limited by the
fact that a set of semantic-preserving AST transformations



must be specified a priori. The task of designing transforma-
tion rules is highly nontrivial however, and differs for each
programming language. For example, while it is reasonable
to canonicalize the order of multiplication between integers
in a strongly typed language such as Java, it might not be
possible under a dynamically typed language such as Oc-
tave or Matlab, where the dimensions of a variable are not
known until runtime. Furthermore, canonicalization cannot
capture programmer intent — if a programmer incorrectly
writes a code snippet, canonicalization might help to group
it with other equivalently wrong snippets, but is unable to
connect the the incorrect snippet with a correct counterpart.

Our approach is founded on two main observations for
dealing with non-exact matches. The first observation is
that in the education setting where almost all submissions
attempt to implement the same functionality, it becomes
feasible to design a set of semantics preserving AST trans-
formations that is customized to each individual program-
ming problem. Thus instead of having to invent a set of
rules that can apply broadly to all programs, we can imag-
ine designing specific syntax transformations that are likely
to be helpful in reducing the variance of student submis-
sions on each particular problem. In contrast with compiler
optimization, canonicalization rules in the education setting
do not have to be perfect — it would be acceptable to use
AST transformations that are valid only for most students,
perhaps reflecting common assumptions made about each
problem. Our second observation is that this design task can
be automated to a large extent, by mining a large enough
dataset of existing student submissions accompanied by unit
test outcomes for each submission.

Example 1 (length(y) and size(y,1)). As an illus-
tration, consider our running example, the linear regression
problem. Students were given a function prototype, assum-
ing among other variables, that a one-dimensional response
vector, y, would be passed in as input. One of the sources of
variation in the problem came from the fact that length(y)
and size(y,1) were both valid and common ways of refer-
ring to the number of elements in y (see for example, the
first line under the function definition in Figure 1(a)). It
would be wrong to call the two expressions equivalent since in
general, length(y) and size(y,1) can give different results
depending on the value of y. Thus, a typical canonicaliza-
tion approach based on semantics preserving AST transfor-
mations would not identify these expressions as being sim-
ilar. However, in the particular context of this linear re-
gression problem, the two expressions would have been in-
terchangeable in nearly all submissions, suggesting our ap-
proach (described next) of identifying the two expressions as
being probabilistically equivalent, and raises the question of
how to discover such identifications from data.

There are two phases of our data driven canonicalization
approach. In Section 4.1, we are given two code phrases and
asked to determine whether they are semantically equivalent
based on data. We then propose a simple semi-automated
method in Section 4.2 that takes a human specified code
phrase and searches the database for all equivalent ways of
writing that code phrase.

4.1 Testing for semantic equivalence
In order to define our notion of probabilistic equivalence,

we first state a formal definition of exact equivalence. We
focus on semantics preserving AST transformations which

take a subtree (or subforest) and replace it by another. A
reasonable definition might then be as follows.

Definition 2. Given two subtrees (or subforests) B and
B′, we say that B and B′ are equivalent if for every AST
containing B, replacing B by B′ always yields a program that
runs identically (i.e. always produces the same output given
the same input).

For brevity, we will use subtrees to refer to both subtrees and
subforests in the remainder of the section. Definition 2 is a
strict notion that might be useful in AST transformations
for compiler optimization (for example, to replace a for-loop
by an unrolled version), but as discussed above, does not
capture the notion of similarity in Example 1 and is thus
overly rigid for our purposes.

Probabilistic formulation of semantic equivalence.
We relax two aspects of the definition of exact equivalence:
• First, instead of asking B and B’ to result in identical

behavior under all inputs, we ask for identical behav-
ior only on a collection of unit tests (which may not be
exhaustive in practice), allowing us to verify similar-
ity using data rather than having to establish formal
proofs about program behavior.

• Second, instead of requiring that B and B’ behave sim-
ilarly under all containing ASTs, we only require that
the two subtrees behave similarly in the context of
ASTs that have a high enough probability of being
submitted to a particular problem.

Formally, let F [A] denote the output of an AST A given a
battery of unit tests as input. In the following, we let P
be the distribution over ASTs that could be submitted to
a particular problem. We assume that P exists, but that
we only have access to draws from it (the already submitted
code). The hope is that reasoning with P allows us to focus
our efforts on the more common solutions and to generalize
about equivalences to never-before-seen ASTs. Our relaxed
notion of equivalence is as follows:

Definition 3. We say that the AST subtrees B and B’
are α-equivalent if, whenever A ∼ P , A′ ∼ P , the following
condition is satisfied:

P (F [A] = F [A′] | B ≤ A,B′ ≤ A′,A\B = A′\B′) ≥ α. (4.1)

We refer to the above probability as the semantic equiva-
lence probability.
In other words, if we condition two random ASTs (A andA′)
drawn from the distribution P to (1) contain the subtrees B
and B′ respectively, and (2) agree on global context (A\B =
A′\B′), then the probability that the unit test outputs of A
and A′ agree should be high if B and B′ are semantically
equivalent.

Estimating the semantic equivalence probability.
Given two subtrees B and B′, we can now estimate the
probability that the two are semantically equivalent. Our
method relies on querying the Codewebs index, and we as-
sume queries always return a list of unique ASTs matching
a given code phrase, along with a count of the number of
submissions matching each AST. First, Equation 4.1 can be
written equivalently as:

P (F [A] = F [A′] | B ≤ A,B′ ≤ A′,A\B = A′\B′) (4.2)

∝
∑
A,A′:

A\B=A′\B′

1{F [A] = F [A′]} · P (A|B ≤ A) · P (A′|B′ ≤ A).

(4.3)



function EquivalenceProb (Subtrees B, B′):

L← QueryIndex(B) ;
L′ ← QueryIndex(B′) ;
Initialize count and denominator to 0;
Z ← 0;

foreach AST Ai ∈ L do
if Ai\B = A′i\B′ for some A′i ∈ L′ then

wi ← ci ∗ c′i ;
count← count + wi if F [Ai] = F [A′i] ;
denominator← denominator + w ;

return count/denominator ;

Algorithm 1: Pseudocode for estimating the se-
mantic equivalence probability between two sub-
trees, B and B′. The function QueryIndex(B) is
assumed to return a list of pairs (Ai, ci) such that
eachAi contains B and ci is the number of submis-
sions matching Ai. Note that the inner loop can
be implemented efficiently using the precomputed
hashes of global contexts (described in Section 3).

Estimating Equation 4.3 by plugging in empirical distri-
butions for P (A|B ≤ A) and P (A|B′ ≤ A′) respectively
amounts to summing over pairs of ASTs in the dataset that
contain B and B′, respectively, and match exactly with re-
spect to global context. For intuition, Algorithm 1 shows
pseudocode for estimating the semantic equivalence proba-
bility for two subtrees using Equation 4.3.

4.2 Semantic equivalence classes and solution
space reductions

Having now discussed the problem of verifying semantic
equivalence between two given subtrees, we turn to the prob-
lem of discovering groups of subtrees that are equivalent and
would be useful for canonicalization.

To discover candidate equivalence classes, we use a two
stage process: in the first stage an instructor annotates a
small set of “seed” subtrees that she believes are semanti-
cally meaningful, and in the second stage we algorithmically
extract as many semantically equivalent subtrees as possible
for each of denoted “seeds.”

The main advantage of this semi-autonomous approach is
that it results in named equivalence classes (as opposed to
anonymous equivalence classes) which can be used to pro-
vide non-cryptic feedback. A secondary benefit is that it
enables a simple and efficient algorithm to extract the most
important equivalences in an intelligent order.

As an example, given the AST A for the implementation
in Figure 1(a), in the first phase an instructor might select
the subtree B corresponding to the expression (X * theta -

y) and label it as the“residual.”In the second phase the algo-
rithm would find other equivalent ways to write the residual,
such as (theta’ * X’ - y’)’. See Figure 3 for more exam-
ples of code snippets that an instructor might select from
the linear regression problem.

In phase two, we expand the seed subtrees one at a time
to build up an equivalence class of subtrees by iterating the
following steps:

1. Finding“feet that fit the shoe”. We perform a first
pass to find candidate subtrees that are potentially
equivalent to B by first detaching the subtree B from
its surroundings, leaving the context C = A\B. We
then query our index for the list of ASTs {A1,A2, . . . }
that contain C (See Figure 2).

B

C

C

C

A

A1 A2

A3

B1 B2

B3

A4

B4

C

C
Query 

ASTs that match on context 

Figure 2: Given a subtree B of an AST A, we query
the Codewebs index for other subtrees that also oc-
cur under the same context (A\B). In this case,
B1, . . . ,B4 would each be considered as candidates for
the equivalence class of subtree B if the unit test out-
comes for their corresponding submissions matched
that of the original AST A.

Under each retrieved AST Ai, the subtree Bi that is
attached to the context C is then considered to be a
candidate for equivalence if F [Ai] = F [A] (that is, if
the unit test outputs for the containing full AST Ai

agree with those of the original AST A). Intuitively,
if another subtree shares the context C and produces
the same output, it suggests that the two can be in-
terchanged without affecting functionality.

Before we add a new element to our set of equivalent
subtrees we use the criterion proposed in Section 4.1 to
verify that the new subtree is indeed probabilistically
equivalent to another subtree already in the set.

2. Finding “shoes that fit the feet”. The first step
will find all subtrees that have an exact context match
with the originally annotated seed subtree. In order to
expand our search for further equivalent subtrees, we
then search for other contexts that can plausibly be
attached to a subtree which is functionally equivalent
to the seed.

For each element B′ in the set of equivalent subtrees
found so far, we find all contexts that contain B′ and
produce the same output as the program from which
we found B′. These contexts are hypothesized to also
be attached to subtrees equivalent to the seed, and as
such, represent new places to look for more potentially
equivalent subtrees.

3. Repeat Until Convergence. We repeat steps (1)
and (2) and expand both the set of equivalent sub-
trees as well as the set of the contexts that we believe
may be attached to one of the equivalent subtrees until
the size of our set stops growing.

Reduction and reindexing. Each equivalence class Σ =
{B1,B2, . . . } learned from the data yields a set of canonical-
ization rules. Thus whenever we encounter a subtree B in
an AST which happens to be a member of the equivalence
class Σ, we can replace B by a single member of that equiv-
alence class (say, B1). The identification of subtrees within
an equivalence class leads to a reduction in the complexity
of the collection of submitted ASTs since ASTs that were
previously distinct can now be transformed into the same
tree. Thus after finding an equivalence class, it is easier to
expand a subsequent set.



theta = theta-alpha*1/m*(X'*(X*theta-y)); 
     

“alphaOverM” “hypothesis” 

“residual” 

Figure 3: Example code snippets corresponding to
AST subtrees tagged by an instructor for the linear
regression problem.

length (y) size (X, 1) size (y, 1) 

rows (X) m rows (y) 

length (X) length (x (:, 1)) size (X) (1) 

(theta' * X' - y')' 

(X * theta - y) 

({hypothesis} - y) 

({hypothesis}' - y’)' 

[{hypothesis} - y] 

sum({hypothesis} - y, 2) 

…
 

alpha * (1 ./ {m}) alpha * (1 / {m}) alpha * 1 ./ {m} 

.01 / {m} alpha * {m} ^ -1 alpha .* (1 ./ {m}) 

1 / {m} * alpha alpha ./ {m} alpha .* (1 / {m}) 

alpha * inv ({m}) 1 .* alpha ./ {m} alpha * pinv ({m}) 

alpha / {m} alpha .* 1 / {m} 1 * alpha / {m} 

(theta' * X')' 

(X * theta) 

theta(1) + theta (2) * X (:, 2) 

(X * theta (:)) 

[X] * theta 

sum(X.*repmat(theta',{m},1), 2) 

…
 

{m} 

{alphaOverM} 

{hypothesis} {residual} 

Figure 4: Selections of code snippets algorithmi-
cally determined for the linear regression home-
work. Note that not all subtrees from the equiv-
alence classes are shown.

Example 4. We highlight several examples of equivalence
classes that were automatically discovered from the submis-
sions to the linear regression problem (shown in Figure 4
with names in braces). Equivalence class {m}, for example,
shows that length(y) and size(y,1) are equivalent, as dis-
cussed in Example 1. Note that equivalence classes can be
defined in terms of other equivalence classes.

It would be difficult to imagine more than a handful of
ways to write the expression alpha/m, but our algorithm
was able to find 135 distinct AST subtrees in the equiva-
lence class {alphaOverM}. Note in particular that nearly all
of the equivalences are not truly semantically equivalent in
the strictest sense of Definition 2, but only in the context of
the homework problem. For example, alpha/m is not inter-
changeable with .01/m in general Octave programs, but since
alpha was set to be .01 for the linear regression problem, the
equivalence was valid in the sense of Definition 3. Similarly,
we inferred an equivalence between the subtrees inv(m) and
1./m, which would not have been equal if a student had re-
defined m to be a matrix instead of a scalar.

After the determination of each equivalence class, we re-
build the Codewebs index and optionally identify further
equivalences. It is often the case that recognizing an equiv-
alence class E (and reindexing taking E into account) can
help us to discover further equivalence classes. For example,
it might be the case that we do not initially have enough ob-
servations to conclude with sufficient statistical confidence
that X*theta-y can be rewritten equivalently as the expres-
sion -(y-(theta’*X’)’). However, by first identifying that
X*theta can be rewritten as (theta’*X’)’, we are likely
to find more matches in the database when querying for
X*theta-y and -(y-(theta’*X’)’), respectively, resulting

in a larger sample size from which to draw conclusions. Us-
ing the same insight that we leveraged to find equivalence
classes, we can also create a class of attempts to pair with ev-
ery equivalence class, where attempts are defined to be sub-
trees that fit into the same contexts as members of the equiv-
alence class but change the output from correct to incorrect.

5. BUG FINDING FROM SEARCH QUERIES
Since the input to our system includes unit test outputs,

determining whether a code submission contains a bug is
not a difficult problem. However, determining where the
bug lies is considerably more challenging. We discuss a way
to use the search engine to localize a bug within code solely
by examining its AST. In the next section we will justify
its effectiveness by evaluating its ability to determine the
presence of a bug in a query code submission without having
access to the unit test output of the query.

Approach. As our ultimate goal is to provide useful feed-
back to as many students as possible, we will focus on com-
mon, localizable bugs. If we consider the distribution of
unit test outputs of ASTs which contain a particular sub-
tree, we would expect that such a distribution correspond-
ing to a buggy subtree would be skewed towards incorrect
outputs, while that corresponding to a non-buggy subtree
would resemble the overall distribution of unit test outputs.
As long as the subtrees are sufficiently small and the bugs
sufficiently common, it is possible to have a reliably large
sample of these unit test output distributions to use for the
purposes of classification.

Notice, however, that as the subtrees become larger, the
corresponding sample sizes necessarily decrease. In fact, for
any submission not in our training set, the improper subtree
consisting of the full AST must has a unit test output distri-
bution with sample size zero. Thus to increase the sample
sizes of our distributions, we use distributions corresponding
to local contexts instead of subtrees for classification.

Algorithm. Our algorithm consists of an indexing phase
and a query phase. In the indexing phase, we iterate over
the local contexts of all proper subtrees of all ASTs in our
collection. For each unique local context we construct a
histogram of the unit tests outputs of the ASTs to which
the context belongs. Notice that these histograms can be
built via queries to our index described in Section 3. We
then classify each local context as being either buggy or not
buggy based on the skew and sample size of its unit test
output histogram.

In the query phase, we iterate over the local contexts of
all proper subtrees of a query AST. For each local context
A[p[a]]\A[a] we mark node p[a] if the local context is rec-
ognized as buggy by our index. We then unmark any node
with a marked descendant, and report all remaining marked
nodes as the roots of the buggy subtrees.

6. EMPIRICAL FINDINGS
In this section we present empirical studies of the per-

formance of our Codewebs system and use it to study data
from Stanford’s ML class. Our current implementation uses
a parser (adapted from the Octave project [3]) to convert
submitted source code to ASTs. The Codewebs indexer can
be run on a personal computer with the full index fitting in
under 6Gb of main memory for almost all problems. Our
running time tests were run on a Lenovo Thinkpad (2.40
GHz) with 8 GB RAM.
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Figure 6: (a) Zipf’s Law: subtree frequency plotted against subtree rank (in the frequency table). (b) Fraction
of remaining unique ASTs after canonicalizing the k most frequent ASTs with 1, 10 or 19 learned equivalence
classes; (c) Number of submissions covered if an instructor were to mark the 25 or 200 most frequent ASTs
after canonicalization
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Figure 5: (a) Runtime in seconds for indexing a
collection of ASTs (as a function of the number of
ASTs) from the “gradient descent (for linear regres-
sion)” problem; (b) Runtime in seconds for indexing
1000 ASTs from each of the homework problems for
Coursera’s ML course plotted against average AST
size (# nodes) for each problem

Running time. We first consider the amount of time re-
quired for indexing by plotting the running time as a func-
tion of the number of ASTs (for the linear regression prob-
lem). We index only the uncanonicalized ASTs for this plot,
though in general we iterate through multiple stages of in-
dexing as new equivalence classes are discovered. In Fig-
ure 5(a), we see that indexing the full set of ASTs requires
roughly 16 seconds, excluding the time required for load-
ing the ASTs from disk (which can dominate indexing time,
depending on the platform).

We next show how the indexing time scales as a function
of the number of nodes in an AST. Figure 5(b) plots the
running time required to index 1000 ASTs on forty different
programming problems against the average number of nodes
per AST for each problem.

We finally note that in all cases, the combined time for
all parsing, indexing, and equivalence discovery operations
is dominated by the amount of time that students are given
to complete an assignment (consisting of 5-7 programming
problems on average).

Code phrase statistics. Given the scale of our data, it
is natural to ask: have we seen all of the code phrases that
we are likely to see? For insight, we turn to Zipf’s law [26],
which characterizes a phenomenon that the frequency of a
word in a large scale natural language corpus is inversely
proportional to its rank in the frequency table. Thus a few
words might be used millions of times, but many words are
just used once. Zipf’s law has had implications for search
engine design, particular for efficient index compression and
caching [2]. Among other things, we know that when words
are sampled from a Zipfian distribution, the size of the vo-
cabulary grows indefinitely without converging to a fixed
maximum size [15].

Asking the similar question of whether code phrases also
obey such a law may yield insight into how the Codewebs
index is expected to grow as a function of the size of the
dataset of submissions. Due to the constrained nature of
the data, we might expect significantly less variety in code
phrases than in natural language. However, our data tells
another story: Figure 6(a), plots the frequency of a sub-
tree against its corresponding rank in the frequency table.
This frequency table was constructed from all subtrees taken
from 10,000 distinct ASTs submitted to the linear regression
problem. The relationship between the log rank and log fre-
quency is evidently nearly linear with an “elbow” at around
the 45th most frequent subtree, up to which all earlier sub-
trees occur more than 10,000 times. We hypothesize that
this elbow is due to the subtrees included in the provided
starter code that was shared by almost all implementations.

A linear regression shows that log(rank) ≈ a−b·log(freq),
where a = 10.677 and b = 1.01 (which is remarkably close to
the slope of 1 postulated by Zipf’s law). Thus given a subtree
from a new submission, there is a significant probability that
it has not yet been observed in the data. On the other
hand, the result also suggests that prior work on dealing
with large scale traditional indexing may apply to scaling
up code phrase indexing as well.

Equivalence classes and reduction. We now evaluate
the amount of reduction obtained via canonicalization. We
manually tagged 19 code phrases that were likely to vary in
the linear regression problem (including those shown in Fig-
ure 4) and used the Codewebs engine to thus find 19 equiv-
alence classes. We first examine the reduction factor in the
number of distinct ASTs if applying canonicalization to the
k most frequently submitted ASTs. Figure 6(b) shows the



result when canonicalizing with just one equivalence class,
with 10 equivalence classes, and all 19. We see that using
more equivalence classes helps for reduction, and in general,
we observe better reduction factors among the more popular
ASTs compared to that of the the overall dataset.

We can also examine the number of submissions that an
instructor could “cover” by giving feedback only to the k
most frequent ASTs (rather than the entire set of ASTs).1

Figure 6(c) plots the achieved coverage if an instructor were
to mark 25 ASTs or 200 ASTs after using canonicalization
(again with varying numbers of equivalence classes). Unsur-
prisingly, the instructor increases coverage simply by mark-
ing more ASTs. However, the plots also suggest that canon-
icalizing has even more of an impact on coverage — we cover
nearly 25,000 of the roughly 40,790 submissions to the lin-
ear regression problem by marking 200 canonicalized ASTs.
Note that we also cover 73% more submissions by marking
just 25 canonicalized ASTS than if we were to mark 200
uncanonicalized ASTs.

Bug identification. Evaluating bug localization is chal-
lenging since there is currently no available “ground truth”
data on the locations of bugs in submitted code. We thus
only evaluate our ability to detect the presence of a bug in
a submission (instead of requiring localization), for which we
do have ground truth through unit tests. Using a Beta(0.1, 0.1)
prior on the probability of an AST having no bugs, we train
our detector in leave-one-out fashion, evaluating accuracy of
predicting the presence of a bug on the left out example. As
a baseline, we compare against a k-nearest neighbor classi-
fier based on tree edit distance between ASTs with k = 5
(see our previous work, [10]).

Considering buggy programs as positive examples, we eval-
uate the precision and recall of both classifiers on the 5000
most frequent ASTs for each homework problem in the class
and compute the F-score (i.e., the harmonic mean of preci-
sion and recall, with higher values corresponding to higher
accuracy) in each case. Figure 7(a) compares this F-score
performance of our query based bug detection algorithm
against that of kNN. As a rough measure of problem com-
plexity, we also visualize the average number of nodes per
AST in each problem (after subtracting the number of AST
nodes that come from the provided starter code) by vary-
ing circle sizes. As can be seen in the plot, bug detection
is generally more difficult for both approaches on the more
complex assignments, with the neural network training prob-
lems being the most difficult. However in many problems,
we obtain reasonable accuracy using both approaches with
the Codewebs based algorithm outperforming the baseline
in most cases.

Figure 7(b) plots the performance of our detection algo-
rithm on the 100 most frequent ASTs, 200 most frequent,
and so on for the linear regression problem. As in our re-
duction experiments, performance is better for the more fre-
quently submitted ASTs, and the drop in accuracy as we
get to less frequent ASTs is graceful. Using canonicaliza-
tion again helps to boost performance in general. On 1000
ASTs, our bug detection precision (with canonicalization) is
.78 and recall is .88. Finally, we remark that the bug local-

1As we discuss later in this section (the Feedback case study),
we would more typically mark code phrases rather than full
ASTs, which would in general lead to greater coverage of
students.
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Figure 7: (a) F-score comparison of Codewebs based
bug detection algorithm against baseline (5-nearest
neighbors) for the 5000 most frequent ASTs for
each assigned homework problem. Each circle cor-
responds to a single homework problem, with cir-
cle widths set to be proportional to the average #
of nodes per AST for that problem; (b) Codewebs
based bug detection F-scores on the k most fre-
quent ASTs, with and without canonicalization on
the “linear regression with gradient descent” home-
work problem.

ization algorithm is fast and capable of handling over 150
requests per second (for the linear regression problem with
an average AST size 116).

Feedback case study. Without the help of our system,
the easiest way to scalably provide feedback to students in
a MOOC is to send canned feedback for the most frequent
(incorrect) unit test outcomes, which often reflect common
misunderstandings. One weakness of this unit-test based ap-
proach, however, is that it can fail when a single conceptual
misunderstanding can lead to multiple unit test outcomes,
or when it occurs in the presence of other bugs. We illustrate
how the Codewebs system can be used to give feedback to
students even when the unit-test based approach fails.

In the linear regression problem, many students erroneously
included an “extraneous sum” in the gradient expression
(e.g., with sum((X*theta-y)’*X) instead of X’*(X*theta-y)
). Upon identifying a single instance of the bug, an in-
structor can then use the Codewebs system to extract many
equivalent ways of writing the erroneous expression (e.g.,
sum(((theta’*X’)’-y)’*X), sum(transpose(X*theta-y)*X),
etc.). These expressions are then matched to incoming stu-
dent submissions, for which we can provide a human gener-
ated message explaining the cause of the misunderstanding.

After extracting equivalences and matching to the existing
submissions, our algorithm found 1208 submissions which
matched the “extraneous sum” bug, outperforming a unit
test based feedback strategy which would have covered 1091



submissions. We can also use both strategies together, giv-
ing feedback to submissions found by either method to con-
tain the bug, which would lead to a 47% increase in number
of submissions covered over just using unit tests.

7. RELATED WORK
Our paper builds upon a body of work on reasoning with

code collections — a problem that arises both for program-
mers and for those learning to program. Code search en-
gines, many of which scale to massive databases have been
proposed, for example, for the purposes of code reuse or
navigating a complicated API [23, 9]. A number of choices
exist in this domain of reasoning with a code collection.
How much structure to take into account is one such choice,
with some systems reasoning at the level of keywords or
tokens [11, 8] to other systems reasoning with the full syn-
tactic structure of the AST [17, 24, 12]. Canonicalization
has been a popular approach for reducing the variance of
a large collection of code in many such works [1, 25]. In
contrast to our paper, this work on code search engines gen-
erally has focused on helping programmers to understanding
what tools in an existing codebase can help a programmer
to accomplish a certain task, which is reflected by features
that are commonly supported, such as the ability to query
for usage examples for a function, or to find methods that
require a certain type as a parameter. Closer to our setting
is the work of Rivers et al. [20, 21], who also used ASTs with
canonicalization to map out the solution space to introduc-
tory programming problems and discover common errors.

However, reasoning about function is critical in many set-
tings, and thus another choice that has received recent at-
tention is whether to incorporate unit test information [11,
14]. Our work efficiently combines what we believe to be the
best of the above ideas: reasoning with ASTs and unit tests,
as well as combining the two sources of data to automati-
cally discover semantically equivalent code phrases. To our
knowledge, this is the first method for automatically finding
canonicalization rules for programs.

The idea that student code can be “clustered” into a small
category of approaches has also been explored by a number
of researchers. Piech et al. [19], for example, cluster tra-
jectories of ASTs over multiple submits by a single student.
Glassman et al. [5] visualize the space of student solutions to
Matlab programming problems in order to identify popular
approaches for solving a problem. A number of recent papers
have clustered students based on abstract syntax trees us-
ing distances in feature space [7, 6], string edit distance [20,
21] and tree edit distance [10], proposing to give feedback
to exemplar submissions. These methods rely almost com-
pletely on syntactic analysis and do not explicitly relate form
to function as in our work. Furthermore, for assignments
with multiple “parts”, each of which can be approached in
multiple ways, the number of clusters intuitively can grow
exponentially in the number of parts, leading to a loss of
interpretability and effectiveness of the method. Our work
is the first to explicitly address the idea that smaller parts
of code can be shared among submissions.

8. DISCUSSION
MOOC platforms now collect massive datasets of student

submissions across hundreds of courses, introducing new re-
search problems of how to organize and search the data ef-
fectively, but also new opportunities to use the data in ways

that were not previously possible. We have developed a sys-
tem called Codewebs which efficiently indexes all of the code
submissions to a MOOC programming assignment and can
be useful in a number of applications. Through a novel use
of unit test information, our system is also able to deter-
mine when code snippets are semantically equivalent in a
data driven way.

As the MOOC ecosystem continues to quickly expand, it
is crucial for accompanying learning technologies to be ap-
plicable to a large variety of courses with minimal effort on
the part of the instructor. Codewebs makes no assumptions
about the underlying assignments and is designed to be eas-
ily applicable to a wide variety of programming languages.
Instead of running dynamic analysis on fully instrumented
programs, the system relies only on unit test information
which is lightweight and thus contributes to portability. To
apply Codewebs to a programming problem, the most im-
portant requirement is a large dataset of student submissions
(which is a given in MOOCs). Beyond data, we only have a
handful of requirements: (1) a mechanism for parsing source
code into an abstract syntax tree (which is available for
most programming languages) (2) a specification of which
nodes of an AST correspond to statements, identifiers, and
constants, (3) a listing of reserved functions and identifiers
that are not to be anonymized, (4) sufficiently informative
unit tests for problems, and (5) instructor specified points
of variation for determining canonicalization rules. Thus we
believe that applying the Codewebs system to submissions
in other coding intensive courses should be straightforward.

There are a number of directions ripe for future work.
At the moment, our system only handles code that parses
correctly. However for beginning programmers, even writ-
ing syntactically valid code can be a challenge. Thus the
question of how to leverage a large dataset for giving feed-
back to unparseable submissions remains an important open
problem. Our current approach is also limited to indexing
submissions of a single function where all implementations
receive the same input and thus can be unit tested in a uni-
fied way. Thus another open problem is how to deal with
long form programs in which students are free to choose how
to decompose an implementation into smaller modules.

We believe many of the insights that went into creating
the Codewebs system may also apply to general search en-
gines for source code outside of the educational setting. But
more interestingly, these ideas may also apply to indexing
formal logic proofs [4] and equations [13], or even natural
language mathematical proofs, which can be useful either for
researchers or educators. Looking even further, it is tantaliz-
ing to speculate about the role that effective search engines
for student content might play in the MOOC ecosystem be-
yond STEM (science, technology, engineering and mathe-
matics) courses. Public exhibitions of student work are,
for example, a common way to culminate university level
art and design courses — but pulling these exhibitions off
at the scale of MOOCs requires an effective way to search
through tens of thousands of submissions. And while the
specific features of designing a search engine for one of these
courses will surely be different from the Codewebs setting,
many of the same questions will still apply. What are the
natural queries for an assignment? How can we exploit the
organizational structure of a search engine index to facilitate
student feedback? How do we scale to tens of thousands of
students?
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