
E�cient Inference with Partial Ranking Queries:
Supplementary Material

In this document, we supply proofs of the theorems
in the main paper and provide extra discussion. To
make this document stand by itself, we resupply the
main de�nitions and theorem statements.

1 De�nitions and notation

Partial rankings.

De�nition 1 (Rankings). Let Ω be a �nite set of
n items. A ranking, σ of items in Ω is a one-
to-one mapping between Ω and a rank set (R =
{1, . . . , n} unless stated otherwise) and is denoted as
σ−1(1)|σ−1(2)| . . . |σ−1(n). We say that σ ranks item
i1 before (or above) item i2 if the rank of i1 is less than
the rank of i2.

De�nition 2 (Symmetric group). The collection of
rankings of itemset Ω is denoted by SΩ (or just Sn
when Ω is implicit). Such sets are called symmetric
groups.

De�nition 3 (Partial Ranking). Let Ω1, Ω2,. . . , Ωk
be an ordered collection of subsets which partition Ω
(i.e., ∪iΩi = Ω and Ωi ∩ Ωj = ∅ if i 6= j). The partial
ranking corresponding to this partition is the collec-
tion of rankings which rank items in Ωi before items
in Ωj if i < j. We denote this partial ranking as
Ω1|Ω2| . . . |Ωk and say that the partial ranking is of
type γ = (|Ω1|, |Ω2|, . . . , |Ωk|). Given a partial rank-
ing of type γ, we denote the set of ranks occupied by
Ωi by R

γ
i . Note that R

γ
i depends only on γ and can be

written as Rγ1 = {1, . . . , γ1}, Rγ2 = {γ1+1, . . . , γ1+γ2},
. . . , Rγk = {

∑k−1
i=1 γi + 1, . . . , n}.

We denote the collection of all partial rankings(over a
given item set Ω) as P.
De�nition 4 (Consistency with a partial order).
Given any ranking σ which is a member of a partial
ranking Ω1| . . . |Ωk, we say that σ is consistent with
Ω1| . . . |Ωk.

Given a partial ranking Ω1| . . . |Ωk of type γ and one
consistent ordering σ, one can obtain the vertical bar

notation of the partial ranking by `dropping' vertical
bars from that of σ. We denote this partial ranking as
Sγσ. Note that there are multiple ways of writing the
same partial ranking.

Proposition 5. σ ∈ Sγπ = Ω1| . . . |Ωk if and only if
for each i, σ(Ωi) = Rγi .

De�nition 6 (Partial ranking indicators). Given a
partial ranking Sγπ, we denote the indicator function
for the collection of rankings consistent with Sγπ by:
δSγπ : Sn → {0, 1}, which evaluates to 1 if σ ∈ Sγπ
and 0 otherwise.

Ri�ed Independence. These de�nitions follow
those from Huang and Guestrin [2, 3, 4].

De�nition 7 (Relative ranking map). Given a rank-
ing σ ∈ SΩ and any subset A ⊂ Ω, the relative ranking
of items in A, φA(σ), is a ranking, π ∈ SA, such that
π(i) < π(j) if and only if σ(i) < σ(j).

De�nition 8 (Interleaving map). Given a ranking
σ ∈ SΩ and a partition of Ω into sets A and B, the
interleaving of A and B in σ (denoted, τAB(σ)) is a
binary function indicating whether a rank in σ is oc-
cupied by A or B. More precisely, for any rank i,

[τAB(σ)](i) =

{
A if σ−1(i) ∈ A
B if σ−1(i) ∈ B .

Note that the interleaving notation used here is some-
what di�erent from that used in the main paper, but
makes formality easier in some proofs. The space of
interleavings (for a �xed A,B) is therefore the set of
{0, 1} valued functions with |A| zeros and |B| ones.
De�nition 9 (Ri�ed Independence). Let h be a dis-
tribution over SΩ and consider a subset A ⊂ Ω and its
complement B. The sets A and B are said to be ri�e
independent if h factors as:

h(σ) = m(τAB(σ)) · f(φA(σ)) · g(φB(σ)),

for distributions m, f and g, de�ned over interleavings
and relative rankings of A and B respectively. We



refer to m and the interleaving distribution and f and
g and the relative ranking distributions for A and B,
respectively.

De�nition 10 (Hierarchy). A (binary) hierarchy H
over item set Ω is a tuple (HA, HB), where HA and
HB are either (1) null, in which case H is called a
leaf, or (2) hierarchies over item sets A and B, respec-
tively, where (A,B) forms a binary partition of Ω. In
this second case, A and B are assumed to both be
nonempty.

De�nition 11 (Hierarchical Ri�ed Independence).
Let H = (HA, HB) be a hierarchy over the item set
Ω. A distribution h over rankings of Ω is said to fac-
tor hierarchically with respect to H if either (1) H is
a leaf, or (2) the sets A and B are ri�e independent
with respect to H, and the distributions f and g over
relative rankings of A and B factor hierarchically with
respect to HA and HB , respectively.

Bayesian conditioning. For simplicity in this pa-
per, we focus on subset observations whose likelihood
functions encode membership with some subset of
rankings in Sn.

De�nition 12 (Observations). A subset observation
O is a binary observation whose likelihood is propor-
tional to the indicator function of some subset of Sn.

De�nition 13 (Decomposability). Given a hierar-
chy H over the item set, a subset observation O de-
composes with respect to H if its likelihood function
L(O|σ) factors ri�e independently with respect to H.

De�nition 14 (Complete decomposability). We say
that an observation O is completely decomposable if it
decomposes with respect to every possible hierarchy
over the item set Ω.

Finally, we denote the collection of all possible com-
pletely decomposable observations as CRI.

2 Main theorems

Proposition 15. Let H be a hierarchy over the item
set. Given a prior distribution h and an observation
O which both decompose with respect to H, the pos-
terior distribution h(σ|O) also factors ri�e indepen-
dently with respect to H.

Proposition 16. Given a prior h which factorizes rif-
�e independently with respect to a hierarchy H, and a
completely decomposable observation O, the posterior
h(σ|O) also decomposes with respect to H and can be
computed in time linear in the number of model pa-
rameters of h.

Theorem 17 (Decomposability of partial rankings).
Every partial ranking observation is completely decom-
posable (P ⊂ CRI).

Theorem 18 (Converse of Theorem 17). Every com-
pletely decomposable observation takes the form of a
partial ranking (CRI ⊂ P).

3 Proofs

3.1 Proof of Proposition 15

Proof. Denote the likelihood function corresponding
to O by L (in this proof, it does not matter that O
is assumed to be a subset observation and the result
holds for arbitrary likelihoods).

We use induction on the size of the item set n = |Ω|.
The base case n = 1 is trivially true. We next ex-
amine the general case where n > 1. The posterior
distribution, by Bayes rule, can be written h(σ|O) ∝
L(σ) · h(σ). There are now two cases. If H is a leaf
node, then the posterior h′ trivially factors according
to H, and we are done. Otherwise, L and h both fac-
tor, by assumption, according to H = (HA, HB) in the
following way:

L(σ) = mL(τAB(σ)) · fL(φA(σ)) · gL(φB(σ)), and

h(σ) = mh(τAB(σ)) · fh(φA(σ)) · gh(φB(σ)).

Multiplying and grouping terms, we see that the pos-
terior factors as:

h(σ|O) = [mL·mh](τAB(σ))·[fL·fh](φA(σ))·[gL·gh](φB(σ)).

To show that h(σ|O) factors with respect to H, we
need to demonstrate (by De�nition 11) that the distri-
butions [fL · fh] and [gL · gh] (after normalizing) factor
with respect to HA and HB , respectively.

Since fL and fh both factor according to the hierarchy
HA by assumption and |A| < n since H is not a leaf,
we can invoke the inductive hypothesis to show that
the posterior distribution, which is proportional to fL ·
fh must also factor according to HA. Similarly, the
distribution proportional to gL·gh must factor ordering
to HB .

Proof. (of Proposition 16) Proposition 15 requires
that the prior and likelihood decompose with respect
to the same hierarchy. However, the propoerty of com-
plete decomposability means that the observation O
decomposes with respect to all hierarchies, and so we
see that Proposition 16 follows as a simple corollary to
Proposition 15.

3.2 Proof of Theorem 17

To prove the theorem, we will exhibit an explicit fac-
torization for any given binary partition of Ω. To de-
�ne these factorizations, we make the following de�ni-
tions.



De�nition 19 (Restriction consistency). Given a par-
tial ranking Sγσ = Ω1|Ω2| . . . |Ωk and any subset
A ⊂ Ω, we de�ne the restriction of Sγσ to A as the
partial ranking on items in A obtained by intersecting
each Ωi with A. Hence the restriction of Sγσ to A is

[Sγσ]A = Ω1 ∩A|Ω2 ∩A| . . . |Ωk ∩A.

De�nition 20 (Interleaving consistency). Given an
interleaving τAB of two sets A,B which partition Ω,
we say that τA,B is consistent with a partial ranking
Sγσ = Ω1| . . . |Ωk if, for all i:

|{j ∈ Rγi : τAB(j) = 0}| = |Ωi ∩A|, and

|{j ∈ Rγi : τAB(j) = 1}| = |Ωi ∩B|.

Given a partial ranking Sγσ, we denote the collection
of consistent interleavings as [Sγσ]AB .

In other words, an interleaving τ is consistent with
Sγσ if it places the `correct' number of As and Bs in
each interval Rγi . Note again that the de�nition here
for the sake of formality is somewhat modi�ed from
that of the main paper.

Proof. (of Theorem 17) We use induction on the size of
the itemset. The cases n = 1, 2 are trivial since every
distribution on S1 or S2 factors ri�e independently.
We now consider the more general case of n > 2.

Fix a partial ranking Sγπ = Ω1|Ω2| . . . |Ωk of type γ
and a binary partition of the item set into subsets A
and B. We will show that the indicator function δSγπ
factors as:

δSγπ(σ) = m(τAB(σ)) · f(φA(σ)) · g(φB(σ)), (3.1)

where factors m, f and g are the indicator functions
for the set of consistent interleavings, [Sγσ]AB , and
the sets of consistent relative rankings, [Sγσ]A and
[Sγσ]B , respectively. If Equation 3.1 is true, then we
will have shown that δSγπ must decompose with re-
spect to the top layer of H. To show that δSγπ de-
composes hierarchically, we must also show that the
relative ranking factors fA and gB decompose with re-
spect to HA and HB , the subhierarchies over the item
sets A and B. To establish this second step (assum-
ing that Equation 3.1 holds), note that fA and gB are
indicator functions for the restricted partial rankings,
[Sγσ]A and [Sγσ]B , which themselves are partial rank-
ings over smaller item sets A and B. The inductive
hypothesis (and the fact that A and B are assumed
to be strictly smaller sets than Ω) then shows that
the functions fA and gB both factor according to their
respective subhierarchies.

We now turn to establishing Equation 3.1. It su�ces to
prove that the following two statements are equivalent:

I. The ranking σ is consistent with the partial rank-
ing Sγπ (i.e., σ ∈ Sγπ).

II. The following three conditions hold:

(a) The interleaving τAB(σ) is consistent with
Sγπ (i.e., τAB(σ) ∈ [Sγπ]AB), and

(b) The relative ranking φA(σ) is consistent with
Sγπ (i.e., φA(σ) ∈ [Sγπ]A), and

(c) The relative ranking φB(σ) is consistent with
Sγπ (i.e., φB(σ) ∈ [Sγπ]B).

• (I ⇒ II): We �rst show that σ ∈ Sγπ implies
conditions (a), (b) and (c).

(a) If σ ∈ Sγπ, then for each i,

|j ∈ Rγi : τAB(j) = 0| = |j ∈ Rγi : σ−1(j) ∈ A|,
(by De�nition 8)

= |k ∈ Ωi : k ∈ A|,
(by Proposition 5)

= |Ωi ∩A|.

The same argument (replacing A with B)
shows that for each i, we have |j ∈ Rγi :
τAB(j) = 1| = |Ωi ∩ B|. These two con-
ditions (by De�nition 20) show that τAB is
consistent with Sγπ.

(b) If σ ∈ Sγπ, then (by De�nition 3) σ ranks
items in Ωi before items in Ωj for any i < j.
Intersecting each Ωi with A, we also see that
σ ranks any item in Ωi∩A before any item in
Ωj∩A for all i, j. By De�nition 7, φA(σ) also
ranks any item in Ωi ∩ A before any item in
Ωj∩A for all i, j. And �nally by De�nition 20
again, we see that φA(σ) is consistent with
the partial ranking Sγπ = Ω1∩A| . . . |Ωk∩A.

(c) (Same argument as (b)).

• (II ⇒ I): We now assume conditions (a), (b),
and (c) to hold, and show that σ ∈ Sγπ. By
Proposition 5 it is su�cient to show that if an item
k ∈ Ωi, then σ(k) ∈ Rγi . To prove this claim, we
show by induction on i that if an item k ∈ Ωi∩A,
then σ(k) ∈ Rγi (and similarly if k ∈ Ωi ∩B, then
σ(k) ∈ Rγi ).
Base case. In the base case (i = 1), we as-
sume that k ∈ Ω1 ∩ A, and the goal is to show
that σ(k) ∈ R1. By condition (a), we have that
τAB(σ) ∈ [Sγπ]AB . By De�nition 20, this means
that: |Ω1 ∩ A| = {j ∈ R1 : [τAB(σ)](j) = 0} =
{j ∈ R1 : σ−1(j) ∈ A}. In words, there are
m = |Ω1 ∩ A| items from A which lie in rank set
R1 = {1, . . . , γ1}. To show that an item k ∈ A
maps to a rank in R1, we now must show that in



the relative ranking of elements in A, k is among
the �rstm. By condition (b), φA(σ) ∈ [Sγπ]A, im-
plying that the item subset Ω1∩A occupy the �rst
m positions in the relative ranking of A. Since
k ∈ Ω1 ∩ A, item k is among the �rst m items
ranked by φA(σ) and therefore σ(k) ∈ R1. A sim-
ilar argument shows that k ∈ Ω1 ∩B implies that
σ(k) ∈ R1.

Inductive case. We now show that if k ∈ Ωi ∩ A,
then σ(k) ∈ Ri. By condition (b), φA(σ) ∈
[Sγπ]A, implying that the item subset Ωi∩A (and
hence, item k) occupies the �rst m = |Ωi ∩A| po-
sitions in the relative ranking of A beyond the
items ∪i−1

j=1(Ωj ∩A). By the inductive hypothesis
and mutual exclusivity, these items, together with
∪i−1
j=1(Ωj∩B) occupy ranks ∪i−1

j=1Rj , and therefore
σ(k) ∈ R` for some ` ≥ i. On the other hand,
condition (a) assures us that |Ωi ∩ A| = {j ∈
Ri : σ−1(j) ∈ A} � or in other words, that the
ranks in Ri are occupied by exactly m items of A.
Therefore, σ(k) ∈ Ri. Again, a similar argument
shows that k ∈ Ωi ∩B implies that σ(k) ∈ Ri.

3.3 Proof of Theorem 18

Recall that the de�nition of the linear span of a set
of vectors in a vector space is the intersection of all
linear subspaces containing that set of vectors. To
prove Theorem 18, we introduce analogous concepts
of the span of a set of rankings.

De�nition 21 (rspan and pspan). Let X ⊂ Sn be
any collection of rankings. We de�ne pspan(X) to be
the intersection of all partial rankings containing X.
Similarly, we de�ne rspan(X) to be the intersection of
all completely decomposable observations containing
X. More formally,

pspan(X) =
⋂

Sγσ:X⊂Sγσ

Sγσ, and

rspan(X) =
⋂

O:X⊂O, O∈CRI

O.

The proof strategy taken in this section is to show
two things: (1) that the pspan of any set is always a
partial ranking, and (2) that in fact, the rspan and
pspan of a set X are exactly the same sets. We then
show in our proof of Theorem 18 that this implies that
any element of CRI must be a partial ranking. The
following proposition lists several basic properties of
the rspan that we will use in several of the proofs.
They all follow directly from de�nition so we do not
write out the proofs.

Proposition 22.

I. (Monotonicity) For any X, X ⊂ rspan(X).

II. (Subset preservation) For any X,X ′ such that
X ⊂ X, rspan(X) ⊂ rspan(X ′).

III. (Idempotence) For any X, rspan(rspan(X)) =
rspan(X).

To reason about the pspan of a set of rankings, we �rst
introduce some basic concepts regarding the combina-
torics of partial rankings. The collection of partial
rankings over Ω forms a partially ordered set (poset)
where Sγ′π′ ≺ Sγπ if Sγπ can be obtained from Sγ′π′

by dropping vertical lines. For example, on S3, we have
that 1|2|3 ≺ 12|3. The Hasse diagram is the graph in
which each node corresponds to a partial ranking and a
node x is connected to node y via an edge if x ≺ y and
there exists no partial ranking z such that x ≺ z ≺ y
(see [5]). At the top of the Hasse diagram is the partial
ranking 1, 2, . . . , n (i.e., all of SΩ) and at the bottom of
the Hasse diagram lie the full rankings. See Figure 3.3
for an example of the partial ranking lattice on S3.

Lemma 23. [Lebanon and Mao (2008) [5]] Given any
two partial rankings Sγπ, Sγ′π′, there exists a unique
supremum of Sγπ and Sγ′π′ (a node Sγsupπsup such
that Sγπ ≺ Sγsupπsup and Sγ′π′ ≺ Sγsupπsup, and any
other such node is greater than Sγsupπsup). Similarly,
there exists a unique in�mum of Sγπ and Sγ′π′.

Lemma 24. Given two partial rankings Sγπ, Sγ′π′,
the relation Sγ′π′ ⊂ Sγπ holds if and only Sγπ lies
above Sγ′π′ in the Hasse diagram.

Proof. If Sγπ lies above Sγ′π′ in the Hasse diagram,
then Sγ′π′ ⊂ Sγπ is trivial since Sγπ can be obtained
by dropping vertical bars of Sγ′π′. Now given that Sγπ
does not lie above Sγ′π′, we would like to show that
Sγ′π′ 6⊂ Sγπ. Let Sγinfπinf be the unique in�mum of
Sγπ and Sγ′π′ as guaranteed by Lemma 23. By the
de�nition of the Hasse diagram, both Sγπ and Sγπ
can be obtained by `dropping' verticals from the ver-
tical bar representation of Sγinfπinf . Since Sγπ does
not lie above Sγ′π′, there must be a vertical bar that
was dropped by Sγ′π′ which was not dropped by Sγπ
(if there does not exist such a bar, then Sγ′π′ ⊂ Sγπ),
and hence there must exist a pair of items i, j sepa-
rated by a single vertical bar in Sγπ but unseparated
in Sγ′π′. Therefore there exists σ ∈ Sγ′π′ such that
σ(j) < σ(i) even though there exists no such σ ∈ Sγπ.
We conclude that Sγ′π′ 6⊂ Sγπ.

Lemma 25. For any X ⊂ Sn, pspan(X) is a partial
ranking.

Proof. Consider any subset X ⊂ Sn. A partial rank-
ing containing every element in X must be an up-
per bound of every element of X in the Hasse dia-
gram by Lemma 24. By Lemma 23, there must ex-
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1|2|3 1|3|2 2|1|3 3|1|2 2|3|1 3|2|1

1|23 12|3 13|2 2|13 3|12 23|1

Figure 1: The Hasse diagram for the lattice of partial rankings on S3.

ist a unique least upper bound (supremum) of X,
Sγsupπsup, such that for any common upper bound
Sγπ of X, Sγπ must also be an ancestor of Sγsupπsup
and hence Sγsupπsup ⊂ Sγπ. We therefore see that
any partial ranking containing X must be a superset
of Sγsupπsup. On the other hand, Sγsupπsup is itself a
partial ranking containing X. Since pspan(X) is the
intersection of partial rankings containing X, we have
pspan(X) = Sγsupπsup and therefore that pspan(X)
must be a partial ranking.

Lemma 26. For any subset of orderings, X,
rspan(X) ⊂ pspan(X).

Proof. Lemma 26 follows almost directly from the fact
that P ⊂ CRI (Theorem 17). Fix a subset X ⊂ Sn
and let π be any element of rspan(X). Consider
any partial ranking indicator function δ ∈ P such
that δ(σ) > 0 for all σ ∈ X. We want to see that
δ(π) > 0. By Theorem 17, δ ∈ CRI. Moreover, since
π ∈ rspan(X), and δ(σ) > 0 for all σ ∈ X, we con-
clude that δ(π) > 0 (by De�nition 21).

To simplify the notation in some of the remaining
proofs, we introduce the following de�nition.

De�nition 27 (Ties). Given a partial ranking Sγπ =
Ω1| . . . |Ωk, we say that items a1 and a2 are tied (writ-
ten a1 ∼ a2) with respect to Sγσ if a1, a2 ∈ Ωi for
some i.

The following basic properties of the tie relation are
straightforward.

Proposition 28.

I. With respect to a �xed partial ranking Sγπ, the tie
relation, ∼, is an equivalence relation on the item
set (i.e., is re�exive, symmetric and transitive).

II. If there exist σ, σ′ ∈ Sγπ which disagree on the
relative ranking of items a1 and a2, then a1 ∼ a2

with respect to Sγπ.

III. If Sγπ ≺ Sγ′π′, and a1 ∼ a2 with respect to Sγπ,
then a1 ∼ a2 with respect to Sγ′π′.

function formPspan(X)

X0 ← X; t← 0;
while ∃Sγπ, Sγ′π′ ∈ Xt which disagree on the
relative ordering of items a1, a2 do

Xt ← ∅ ;
foreach Sγσ ∈ Xt do

Add any partial ranking obtained by
deleting a vertical bar from Sγσ
between items a1 and a2 to Xt;

t← t+ 1;
return any element of Xt ;

Algorithm 1: Pseudocode for computing
pspan(X). formPspan(X) takes a set of partial
rankings (or full rankings) X as input and outputs
a partial ranking. This algorithm iteratively deletes
vertical bars from elements of X until they are in
agreement. Note that it is not necessary to keep
track of t, but we do so here to ease notation in the
proofs. Nor is this algorithm the most direct way
of computing pspan(X), but again, it simpli�es the
proof of our main theorem.

IV. If a1 ∼ a2 with respect to Sγπ, and σ(a1) <
σ(a3) < σ(a2) for some item a3 ∈ Ω and some
σ ∈ Sγπ, then a1 ∼ a2 ∼ a3.

We now consider the problem of computing the partial
ranking span (pspan) of a given set of rankings X.
In Algorithm ??, we show a simple procedure that
provably outputs the correct result.

Proposition 29. Given a set of rankings X as input,
Algorithm 1 outputs pspan(X).

Proof. We prove three things, which together prove
the proposition: (1) that the algorithm terminates, (2)
that at each stage the elements of X are contained in
pspan(X), and (3) that upon termination, pspan(X)
is contained in each element of X.

1. First we note that the algorithm must terminate
in �nitely many iterations of the while loop since
at each stage at least one vertical bar is removed
from a partial ranking, and when all of the vertical



bars have been removed from the elements of X,
there are no disagreements on relative ordering.

2. We now show that at any stage in the algo-
rithm, every element of Xt is a subset of the
pspan(X). Consider Sγπ ∈ Xt such that Sγπ ⊂
pspan(X). If Sγπ is replaced by Sγ′π′ in Xt+1,
then we want to show that Sγ′π′ ⊂ pspan(X) as
well. From Algorithm 1, for some i, if Sγπ =
Ω1| . . . |Ωj |Ωj+1| . . . |Ωk, Sγ′π′ can be written as
Ω1| . . . |Ωj ∪ Ωj+1| . . . |Ωk, where the vertical bar
between Ωj and Ωj+1 are deleted due to the ex-
istence of partial rankings in Xt which disagree
on the relative ordering of items a1, a2 on oppo-
site sides of the bar, then by Proposition 29 (II),
we know that a1 ∼ a2 (with respect to Sγπ). By
transitivity (I) and (II), if a1 ∈ Ωi and a2 ∈ Ωi′ ,
then any two elements of Ωi and Ωi′ are also tied.
By (IV), all the items lying in Ωi,Ωi+1, . . . ,Ωi′ are
thus tied with respect to pspan(X) and therefore
removing any bar between items a1 and a2 (pro-
ducing, for example, Sγ′π′) results in a partial
ranking which is a subset of pspan(X).

3. Finally, upon termination, if some ranking σ ∈ X
is not contained in some element Sγπ ∈ Xt, then
there would exist two items a1, a2 whose relative
ranking σ and Sγπ disagree upon, which is a con-
tradiction. Therefore, every element Sγπ ∈ Xt

contains every element ofX and thus pspan(X) ⊂
Sγπ for every Sγπ ∈ Xt.

As a �nal step before being able to prove our second
main claim, that rspan(X) = pspan(X) for any X,
we prove the following two technical lemmas about
Algorithm 1 which form the heart of our argument. In
particular, for a completely decomposable observation
O ∈ CRI, Lemma 30 below shows a ranking contained
in O can �force� other rankings to be contained in O.
Lemma 30. Let O ∈ CRI and suppose there exist
π1, π2 ∈ Sn which disagree on the relative ranking of
items i, j ∈ Ω such that π1, π2 ∈ O. Then the ranking
obtained by swapping the relative ranking of items i, j
within any π3 ∈ O must also be contained in O.

Proof. Let h be the indicator distribution correspond-
ing to the observation O. We will show that swapping
the relative ranking of items i, j in π3 will result in
a ranking which is assigned nonzero probability by h,
thus showing that this new ranking is contained in O.

Let A = {i, j} and B = Ω\A. Since O ∈ CRI, h must
factor ri�e independently according to the partition
(A,B). Thus,

h(π1) = m(τAB(π1)) · f(φA(π1)) · g(φB(π1)) > 0, and

h(π2) = m(τAB(π2)) · f(φA(π2)) · g(φB(π2)) > 0.

Since π1 and π2 disagree on the relative ranking of
items in A, this factorization implies in particular that
both f(φA = i|j) > 0 and f(φA = j|i) > 0. Since
h(π3) > 0, it must also be that each of m(τAB(π3)),
f(φA(π3)), and g(φB(π3)) have positive probability.
We can therefore swap the relative ranking of A, φA,
to obtain a new ranking which has positive probability
since all of the terms in the decomposition of this new
ranking have positive probability.

Lemma 31 provides conditions under which removing
a vertical bar from one of the rankings in X will not
change the support of a completely ri�e independent
distribution. The key strategy in this proof is to ar-
gue that large subsets of rankings must be contained
in a completely decomposable observation O by de-
composing rankings into transpositions and invoking
Lemma 30 ad nauseum.

Lemma 31. Let Sγπ = Ω1| . . . |Ωi|Ωi+1| . . . |Ωk be a
partial ranking on item set Ω, and Sγ′π′ = Ω1| . . . |Ωi∪
Ωi+1| . . . |Ωk, the partial ranking in which the sets Ωi
and Ωi+1 are merged. Let a1 ∈ ∪ij=1Ωj and a2 ∈
∪kj=i+1Ωj. If O is any element of CRI such that
Sγπ ⊂ O and there additionally exists a ranking π̃ ∈ O
which disagrees with Sγπ on the relative ordering of
a1, a2, then Sγ′π′ ⊂ O.

Proof. We will �x a completely decomposable O and
again work with h, the indicator distribution corre-
sponding to O. Let σ ∈ Sγ′π′. To prove the lemma,
we need to establish that h(σ) > 0. Let σ0 be
any element of Sγπ such that σ0(k) = σ(k) for all
k ∈ Ω\(Ωi ∪ Ωi+1). Since Sγπ ⊂ supp(h) by assump-
tion, we have that h(σ0) > 0.

Since σ0 and σ match on all items except for those
in Ωi ∪ Ωi+1, there exists a sequence of rankings
σ0, σ1, σ2, . . . , σm = σ such that adjacent rankings in
this sequence di�er only by a pairwise exchange of
itemsb1, b2 ∈ Ωi ∪ Ωi+1. We will now show that at
each step along this sequence, h(σt) > 0 implies that
h(σt+1) > 0, which will prove that h(σ) > 0. Suppose
now that h(σt) > 0 and that σt and σt+1 di�er only by
the relative ranking of items b1, b2 ∈ Ωi∪Ωi+1 (without
loss of generality, we will assume that σt(b2) < σt(b1)
and σt+1(b1) < σt+1(b2)).

The idea of the following paragraph is to use the previ-
ous lemma (Lemma 30) to prove that σt+1 has positive
probability and to do so, it will be necessary to argue
that there exists some ranking σ′ such that h(σ′) > 0
and σ′(b1) < σ′(b2) (i.e., σ′ disagrees with σt on the
relative ranking of b1, b2). Let ω be any element of
Sγπ. If a1 ∈ Ωi, rearrange ω such that a1 is ranked
�rst among elements of Ωi. If a2 ∈ Ωi+1, further rear-
range ω such that a2 is ranked last among elements of



Ωi+1. Note that ω is still an element of Sγπ after the
possible rearrangements and therefore h(ω) > 0. We
can assume that ω(b2) < ω(b1) since otherwise we will
have shown what we wanted to show. Thus the relative
ordering of a1, a2, b1, b2 within ω is a1|b2|b1|a2. Note
that we treat the case where the items a1, a2, b1, b2 are
distinct, but the same argument follows in the cases
when a1 = b2 or a2 = b1.

Now since π̃ disagrees with Sγπ on the relative or-
dering of a1, a2 by assumption (and hence disagrees
with ω), we apply Lemma 30 to conclude that swap-
ping the relative ordering of a1, a2 within ω (obtain-
ing a2|b2|b1|a1) results in a ranking, ω′, such that
h(ω′) > 0. Finally, observe that ω and ω′ must now
disagree on the relative ranking of a2, b2, and invoking
Lemma 30 again shows that we can swap the relative
ordering of a2, b2 within ω (obtaining a1|a2|b1|b2) to
result in a ranking σ′ such that h(σ′) > 0. This ele-
ment σ′ ranks b1 before b2, which is what we wanted
to show.

We have shown that there exist rankings which dis-
agree on the relative ordering of b1 and b2 with pos-
itive probability under h. Again applying Lemma 30
shows that we can swap the relative ordering of items
b1, b2 within σt to obtain σt+1 such that h(σt+1) > 0,
which concludes the proof.

Recall that Lemma 26 showed that rspan(X) ⊂
pspan(X). We now use Lemma 31 to show the re-
verse inclusion also holds, establishing that the two
sets are in fact equal.

Proposition 32. For any subset of orderings, X,
rspan(X) ⊃ pspan(X).

Proof. At each iteration t, Algorithm 1 produces a
set of partial rankings, Xt. We denote the union of
all partial rankings at time t as X̃t ≡

⋃
Sγσ∈Xt Sγσ.

Note that X̃0 = X and X̃T = pspan(X). The idea
of our proof will be to show that at each iteration
t, the following set inclusion holds: rspan(X̃t) ⊂
rspan(X̃t−1). If indeed this holds, then after the �nal
iteration T , we will have shown that:

pspan(X) = X̃T , (Proposition 29)

⊂ rspan(X̃T ),

(Monotonicity, Proposition 22)

⊂ rspan(X̃0),

(rspan(X̃t) ⊂ rspan(X̃t−1), shown below),

⊂ rspan(X) (X̃0 = X, see Algorithm 1)

which would prove the Proposition.

It remains now to show that rspan(X̃t) ⊂
rspan(X̃t−1). We claim that X̃t ⊂ rspan(X̃t−1). Let

σ ∈ X̃t. If σ ∈ X̃t−1, then since X̃t−1 ⊂ rspan(X̃t−1),
we have σ ∈ rspan(X̃t−1) and the proof is done. Oth-
erwise, σ ∈ X̃t\X̃t−1. In this second case, we use
the fact that at iteration t, the vertical bar between
Ωi and Ωi+1 was deleted from the partial ranking
Sγπ = Ω1| . . . |Ωi|Ωi+1| . . . |Ωk (which is a subset of

X̃t−1) to form the partial ranking Sγ′π′ = Ω1| . . . |Ωi∪
Ωi+1| . . . |Ωk. (which is a subset of X̃t). Furthermore,
in order for the vertical bar to have been deleted by
the algorithm, there must have existed some partial
ranking (and therefore some full ranking ω′) that dis-
agreed with Sγπ on the relative ordering of items a1, a2

on opposite sides of the bar. Since σ ∈ X̃t\X̃t−1 we
can assume that σ ∈ Sγ′π′.

We now would like to apply Lemma 31. Note that for
anyO ∈ CRI such that X̃t−1 ⊂ O, we also have Sγπ ⊂
O, since Sγπ ⊂ X̃t−1. An application of Lemma 31
then shows that Sγ′π′ ⊂ O and therefore that σ ∈ O.

We have shown in fact that σ ∈ O holds for any O ∈
CRI such that X̃t−1 ⊂ O, and therefore taking the
intersection of supports over all O ∈ CRI, we see that
X̃t ⊂ rspan(X̃t−1). Taking the rspan of both sides
yields:

rspan(X̃t) ⊂ rspan(rspan(X̃t−1)),

(Subset preservation, Proposition 22)

⊂ rspan(X̃t−1).

(Idempotence, Proposition 22)

Finally, we can collect the lemmas together to prove
our main result � that any completely decomposable
observation must take the form of a partial ranking.

Proof. (of Theorem 18): Let O ∈ CRI and let
X = O. We have O = rspan(O). Since
rspan(X) ⊃ pspan(X) by Proposition 32, and
rspan(X) ⊂ pspan(X) by Lemma 26, we have equal-
ity: rspan(X) = pspan(X), implying that X =
pspan(X). Finally, by Lemma 25, we know that
pspan(X) is a partial ranking, and therefore X = O
must also be a partial ranking.

4 Mallows models and partial

rankings

In this section we explore the relationship between the
well known Mallows model with ri�e independent hi-
erarchical models. We show in particular that, under a
Mallows distribution, items are ri�e independent with
respect to a chain hierarchy. Exploiting this ri�e in-
dependent structure yields an e�cient method for con-
ditioning on arbitrary partial rankings.



Let dτ : Sn × Sn → R be the Kendall's tau dis-
tance metric on rankings. Given two rankings σ1, σ2,
dτ (σ1, σ2) is de�ned as the minimum number of adja-
cent transpositions necessary to convert one argument
σ1 into the other, σ2. The Mallows model is a distri-
bution over rankings de�ned as:

p(σ;φ, σ0) ∝ φ−dτ (σ,σ0), (4.1)

where σ0 represents a central or reference ranking and
φ is a spread parameter. For simplicity, we will assume
that σ0 is the identity ranking mapping item 1 to rank
1, item 2 to rank 2, and so on.

For a given ranking σ and each item j of the item set,
de�ne:

Vj(σ) = #{i : j + 1 ≤ i ≤ n, σ(i) < σ(j)},

which is simply the number of items in the item-
set {j + 1, . . . , n} which are ranked before item
j with respect to σ. The collection of Vjs fully
determines the ranking σ, and the following
procedure can be used to reconstructs σ ([6]):

function reconstructSigma(V1, . . . , Vn−1)

Initialize σ to be a ranking of {n}, mapping n to 1 ;
for j = n− 1, n− 2, . . . , 1 do

Insert item j in rank Vj + 1;
return σ ;

Algorithm 2: Reconstruct σ from the collection of Vjs.
Note that Vn is always zero and hence is not used in the
algorithm.

Fligner & Verducci �rst showed [1] (see also [6]) that
a ranking can be sampled from the Mallows model
by drawing the Vj independently, each according to
a particular exponentially parameterized distribution.
In particular, set each Vj to be a value r drawn from
the set {0, . . . , n− j} with probability proportional to
φr (where, again, φ is the Mallows spread parameter).
Using Algorithm 2 to reconstruct σ from the drawn
values of Vj yields an independent draw from a Mal-
lows model with spread parameter φ.

This generative procedure of drawing the Vj indepen-
dently is exactly the same as that of a ri�e indepen-
dent hierarchy in which a single item is partitioned out
of the hierarchy at each level of the hierarchy, with ex-
ponentially parameterized interleaving distributions.
For example, on n = 5 items, the hierarchy encod-
ing the factorization of the Mallows model is given in
Figure 2 with item 1 being partitioned out at the top-
most level, then item 2 partitioned out at the second
layer, and so on. Since each leaf node consists of a
single item, there are no relative ranking parameters.
At each internal node of the hierarchy, the interleav-
ing distribution which determines the position where

{1,2,3,4,5}

{1} {2,3,4,5}

{2} {3,4,5}

{3} {4,5}

{4} {5}

Figure 2: An example of a hierarchical structure over �ve
food items

item j is inserted into the item subset {j+ 1, . . . , n} is
given by m(τAB = B|B| . . . |A| . . . |B|B) ∝ φr, where
r is the position of the A item in τ .

As a side note, we remark that these interleaving dis-
tributions are very similar to (but not exactly the same
as) the biased ri�e shu�es introduced in Huang et
al. [2], where the interleaving step is likened to the rif-
�e shu�e for cards, in which one drops cards one by
one, selected from the left or right deck after each drop
with some probability.

To compute the sum over rankings which are consis-
tent with a partial ranking Sγσ, it is necessary to con-
dition on Sγσ, and to compute the normalization con-
stant of the resulting function. The conditioning step
can be performed using the methods in this paper, and
the normalization constant can be computed by mul-
tiplying the normalization constant of each factor of
the hierarchical decomposition.

Palin dataset

We extracted a dataset from a database of search-
trails collected by [7], in which browsing sessions of
roughly 2000 users were logged during 2008-2009. In
many cases, users are unlikely to read articles about
the same story twice, and so it is often possible to think
of the order in which a user reads through a collection
of articles as a top-k ranking over articles concerning
a particular story/topic. The ability to model visit
orderings would allow us to make long term predic-
tions about user browsing behavior, or even recom-
mend `curriculums' over articles for users. We ran our
algorithms on roughly 300 visit orderings for the eight
most popular posts from www.huffingtonpost.com

concerning `Sarah Palin', a popular subject during the
2008 U.S. presidential election. The articles in the
dataset are ordered as follows:

• http://www.huffingtonpost.com/2008/08/29/
sarah-palin-former-beauty_n_122400.html

• http://www.huffingtonpost.com/2008/09/13/
tina-fey-as-sarah-palin-o_n_126249.html
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Log-likelihood vs EM iterations

(a) Progress of EM with respect to expected complete
data log-likelihood. Notice that �rst three iterations cor-
respond to structural changes, and after the �rst three
points, improvements are due to parameter changes, which
are smoother.

{0,1,2,3,4,5,6,7}

{5} {0,1,2,3,4,6,7}

{0,1,2,3,4,7} {6}

{7}{0,1,2,3,4}

{0,2,3} {1,4}

Log likelihood: -818.6579

After 1st iteration

{0,1,2,3,4,5,6,7}

{5} {0,1,2,3,4,6,7}

{0,1,2,3,4,7} {7}

{6}{0,1,2,3,4}

{0,2,3} {1,4}

Log likelihood: -769.2369

After 2nd iteration

{0,1,2,3,4,5,6,7}

{5} {0,1,2,3,4,6,7}

{0,1,2,3,4,7} {7}

{1,4,6}{0,2,3}

Log likelihood: -767.2760

After 3rd iteration

(b) Iterations of Structure EM for the Sarah Palin data with structural
changes at each iteration highlighted in red. This �gure is best viewed
in color.

Figure 3: Experiment results for the Sarah Palin dataset.

• http://www.huffingtonpost.com/2008/08/31/
sarah-palin-photos-a-bust_n_122816.html

• http://www.huffingtonpost.com/
charlotte-hilton-andersen/
sarah-palin-bikini-pictur_b_123234.html

• http://www.huffingtonpost.com/2008/09/27/
tina-fey-as-sarah-palin-k_n_129956.html

• http://www.huffingtonpost.com/2008/09/03/
sarah-palin-rnc-conventio_n_123703.html

• http://www.huffingtonpost.com/2008/09/11/
sarah-palins-charlie-gibs_n_125772.html

• http://www.huffingtonpost.com/2008/08/01/
sarah-palin-mccains-vice_n_116383.html

We plot the �rst three iterations of the EM algorithm
when run on the Sarah Palin data in Figure 3(b).
These three iterations are important because they
correspond to large global structural changes in the
model. After the third iteration, the structure did not
change and the only improvements in log-likelihood
are due to parameter learning (Figure 3(a)).

We remark that the �nal structure is interpretable �
for example, the leaf set {0, 2, 3} corresponds to the
three posts about Palin's wardrobe before the elec-
tion, while the posts from the leaf set {1, 4, 6} were
related to verbal ga�es made by Palin during the cam-
paign. Article 5 was about Palin's RNC convention
speech and article 7 is about the announcement that
she was joining the McCain ticket as vice presidential
candidate.
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