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A B S T R A C T

Probabilistic reasoning and learning with permutation data arises as a
fundamental problem in myriad applications such as modeling preference
rankings over objects (such as webpages), tracking multiple moving objects,
reconstructing the temporal ordering of events from multiple imperfect
accounts, and more. Since the number of permutations scales factorially
with the number of objects being ranked or tracked, however, it is not
feasible to represent and reason with arbitrary probability distributions on
permutations. Consequently, many approaches to probabilistic reasoning
problems on the group of permutations have been either ad-hoc, unscal-
able, and/or relied on rigid and unrealistic assumptions. For example,
common factorized probability distribution representations, such as graph-
ical models, are inefficient due to the mutual exclusivity constraints that
are typically associated with permutations.

This thesis addresses problems of scalability for probabilistic reasoning
with permutations by exploiting a number of methods for decomposing
complex distributions over permutations into simpler, smaller component
parts. In particular, we explore two general and complementary approaches
for decomposing distributions over permutations: (1) additive decompositions
and (2) multiplicative decompositions. Our additive approach is based on the
idea of projecting a distribution onto a group theoretic generalization of
the Fourier basis. Our multiplicative approach assumes a factored form for
the underlying probability distribution based on a generalization of the
notion of probabilistic independence which we call riffled independence.

We show that both probabilistic decompositions lead to compact repre-
sentations for distributions over permutations and that one can formulate
efficient probabilistic inference algorithms by taking advantage of the combi-
natorial structure of each representation. An underlying theme throughout
is the idea that both kinds of structural decompositions can be employed in
tandem to relax the apparent intractability of probabilistic reasoning over
the space of permutations.

From the theoretical side, we address a number of problems in under-
standing the consequences of our approximations. For example, we present
results in this thesis which illuminate the nature of error propagation in
the Fourier domain and propose methods for mitigating their effects.

Finally, we apply our decompositions to multiple application domains.
For example, we show how the methods in the thesis can be used to
solve challenging camera tracking scenarios as well as to reveal latent
voting patterns and structure in Irish political elections and food preference
surveys.

To summarize, the main contributions of this thesis can be categorized
into the following three broad categories:
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• Principled and compactly representable approximations of probability
distributions over the group of permutations,

• Flexible probabilistic reasoning and learning algorithms which ex-
ploit the structure of these compact representations for running time
efficiency, and

• Theoretical analyses of approximation quality as well as algorithmic
and sample complexity.
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1
I N T R O D U C T I O N

PERMUTATIONS are all around us. From the configuration of a deck of
cards [11], to preference rankings of sushi [70], even to the ordering of

rings in a bell tower [14], permutations play a role in many aspects of our
lives and it is no surprise that these combinatorial objects arise as a central
topic of study in modern mathematics.

For all the attention that has been rendered to the study of permutations
over the last centuries, however, it has not been until recent decades that
mathematicians and statisticians have devoted significant effort to studying
probability distributions on permutations, which arise nearly as frequently
as permutations themselves. Since the 1980s, statisticians (such as Persi
Diaconis) have tackled a broad range of issues on probabilistic modeling,
learning and hypothesis testing for distributions over permutations.

This thesis comes at similar questions about probabilistic reasoning
and learning on permutations from both the statistical and computational
perspectives of machine learning. We address problems of how one might
tractably represent, reason with, and estimate distributions over the space
of permutations in both the statistical and algorithmic senses. In particular,
we propose:

• Principled and compactly representable approximations of probability
distributions over the group of permutations,

• Flexible probabilistic reasoning and learning algorithms which exploit
the structure of these compact representations for efficiency, and

• Theoretical analysis of approximation quality as well as algorithmic
and sample complexity.

1.1 applications

This thesis also focuses on a number of real permutation datasets, taken
from diverse application domains. Below we outline a number of scenarios
in which permutations can arise in real problems.

1.1.1 Card games

Historically, distributions over permutations were perhaps first studied
in the context of card games and gambling. In the context of cards, a
permutation can be thought of as a configuration of a deck of cards (“King
of Hearts on top, 3 of Spades second, etc.”) and with uncertainty emerging
due to partial observability and some number of shuffles that typically
precede a card trick or game. Some questions that typically arise are: “What

3
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4 introduction

suite does the top card in the deck most likely belong to?”, or “What is the
probability that an opponent has a full house?”, or “How many shuffles
are required to sufficiently randomize a deck?”. Bayer and Diaconis [11]
analyzed the commonly used riffle shuffle (see Figure 2a) and remarkably
found that seven typical shuffles are sufficient to bring the distribution
over configurations of a standard 52 card deck to be close to uniform (and
that further shuffles do not help very much). The card shuffling problem
has been tackled in a number of papers over the last two decades. See, for
example, Aldous and Diaconis [4], Diaconis [29], and Bayer and Diaconis
[11].

1.1.2 Preference Rankings

Distributions over rankings (and votes) arise in a multitude of information
retrieval tasks. Based on user information, prior site visits, mouseclicks,
and other possible information, one would like to produce a ranking of
websites, preferred films or books for a given search query. Distributions
over rankings arise due to variations in preferences among different people.
For example, some people prefer to rent romantic comedies, while others
enjoy action movies. Such population effects are not captured by a single
ranking but rather, an entire probability distribution over rankings. Distri-
butions can also arise due to uncertainty over the preference relations of a
particular person. For example, ranking data is more often than not only
available in partial form, where users provide partially specified rankings
(“My five favorite movies in no particular order are. . . ”). Data are some-
times available in the form of ratings rather than direct rankings and it
often makes sense to convert them to rankings before data analysis since
ratings across people are often incompatible (“My perfect 10 might not
be your perfect 10”). Such ranking problems have been studied by many
statisticians over the past decades including: [30, 26, 36, 91, 84, 86, 126, 28]

Similarly, rankings occur in a number of political election settings. While
many elections such as plurality voting in the Unites States are based
on ‘first-past-the-post’ rules, voting systems based on ranking candidates
in order of preference are also common in a number of organizations,
from countries such as Ireland and Malta, to smaller groups such as the
American Psychological Association and the American Academy of Motion
Picture Arts and Sciences (which decides the winners of the Oscar awards).

1.1.3 Tracking, matching and identity management

Consider the problem of tracking n objects (vehicles or people, for example)
based on a set of noisy measurements of identity and position. A typical
tracking system might attempt to manage a set of n tracks along with an
identity corresponding to each track, in spite of ambiguities from imperfect
identity measurements. When the objects are well separated, the problem
is easily decomposed and measurements about each individual object can
be clearly associated with a particular track. When objects pass near each
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1.2 dealing with factorial possibilities: two related problems 5

(a) (b)

(c)

Figure 1: Feature point matching example: (a) and (b) are images of the same scene taken
from two similar viewpoints. (c) shows seventy detected SIFT feature points [89]
in each image and a possible match (correspondence) between the two sets of
points.

other, however, confusion can arise as their signal signatures may mix;
see Figure 2c. After the individual objects separate again, their positions
may be clearly distinguishable, but their identities can still be confused,
resulting in identity uncertainty which must be propagated forward in time
with each object, until additional observations allow for disambiguation.
This task of maintaining a belief state for the correct association between
object tracks and object identities while accounting for local mixing events
and sensor observations, was introduced in [120] and is called the identity
management problem. Identity management and the closely related problem
of date association have been addressed in a number of previous works,
including: [8, 9, 21, 25, 106, 105, 109, 103, 112, 115, 116, 121, 47].

1.2 dealing with factorial possibilities : two related prob-
lems

In each of the above problems, one must deal the fact that there are factori-
ally many possible rankings, which poses a number of significant challenges
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6 introduction

(a) (b)

[1 0]
T

[0 1]
T

[a 1−a]
T

T
[1−a a]

?

?

or

This is a car! This is a bus!

mixing: sensor node: current agent: belief vector:[a 1−a]T

(c)

Figure 2: Card shuffling: (a) demonstrates the standard “riffle-shuffle” on a deck of cards;
Identity management examples: (b) illustrates a multiperson tracking scenario
(soccer game) where identity information is weak due to low-resolution imagery
(image from [34]), and (c) (image from [47]) illustrates a “mixing” event in which
two tracks swap identity with some probability.

for learning and inference. We address two related problems in this thesis:
representation and inference.

representation Since there are n! permutations of n items, simple
tabular representations of distributions over permutations are intractable
for even moderately sized n. Storing an array of 12! doubles, for example,
requires roughly 14 gigabytes of storage, which is beyond the RAM capacity
of a typical modern PC. A tabular representation of distributions over a
standard deck of 52 cards requires storing over 8× 1067 probabilities.

By the representation problem, we refer to the challenge of identifying
realistic learning biases, model simplifications, and problem decomposi-
tions which allow for a distribution over permutations to be efficiently
represented in polynomial space. More than being just a storage problem,
we also desire representations which can be learned efficiently with poly-
nomial training examples. For nontrivial n, it is impractical to hope that
each of the n! possible permutations would appear even once in a training
set. It is said (Su [123]), for example, that any configuration of a deck of
52 cards achieved through random shuffling has most likely never been
seen before in the history of card shuffling! The only existing datasets in
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1.3 exploiting structural decompositions : two related approaches 7

which every possible permutation is realized are those for which n 6 5,
and in fact, the APA dataset (American Psychological Association), which
we discuss at various points throughout the thesis is the only such dataset
for n = 5 that we are aware of.

inference. Even if we knew how to solve the representation problem,
however, we would still need to contend with the fact that the naive algo-
rithmic complexity of common probabilistic operations is also intractable
for such distributions. Computing the marginal probability in a preference
ranking problem, h(σ(Corn) < σ(Peas)), that Corn is preferred over Peas,
for example, requires summing h over the rankings which place Corn
before Peas (the collection over which has O((n− 2))!) elements).

With respect to the inference problem, we are interested in finding ways
to exploit any underlying structure within our chosen probabilistic repre-
sentations to formulate accurate and efficient algorithms for performing a
number of probabilistic operations such as marginalization, conditioning,
and normalization, etc.

1.3 exploiting structural decompositions: two related ap-
proaches

A pervasive technique in machine learning for making large problems
tractable is to exploit conditional independence structures for decomposing
large problems into much smaller ones. It is the structure of conditional
independence which has made graphical models (such as Bayesian networks
and conditional random fields) so ubiquitous in machine learning and
AI [74]. Unfortunately, graphical models over permutations do not lead to
decompositions which can be tractably represented in storage and therefore
necessitate alternative methodologies.

Instead, in this thesis, we address the representation and inference prob-
lems by decomposing distributions over permutations via two alternative
approaches: additive (Fourier transform based) decompositions and multiplicative
(probabilistic independence based) decompositions.

• In the additive decomposition, a distribution h is approximated by a
weighted linear combination of Fourier basis functions defined over
permutations. These Fourier basis functions are ordered by complex-
ity, from low-frequency functions capturing large-scale, global effects,
to high-frequency functions capturing more localized, small-scale
effects. Bandlimited approximations, which maintain weights only
for a fixed set of low-frequency basis functions can therefore be used
as a compact way of representing distributions over permutations.

• In the multiplicative decomposition, a distribution h is approximated
as a product of factors defined over rankings of small sets of items.
While conditional independence assumptions are typically unreal-
istic for, say, ranking applications, we propose a simple alternative
generalization of independence (called riffled independence) which is
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8 introduction

more effective and realistic as a compact approximation. Explicitly
restricting the possible probabilistic dependencies among variables
via such a decomposition yields interpretable models as well as expo-
nential reductions in storage complexity, since each factor can often
be represented compactly.

As we discuss, certain probabilistic inference operations are often easier
to perform with respect to one representation than the other. An underly-
ing theme throughout, however, is the idea that both kinds of structural
decompositions can often be employed in tandem to relax the apparent in-
tractability of probabilistic reasoning over the space of permutations. Using
these decompositions, we develop general, efficient techniques applicable
to multiple domains. For example, we apply the methods developed in this
thesis both to solving challenging camera tracking scenarios as well as to
reveal voting patterns in Irish elections which had never been identified
before.

1.4 thesis contributions

This thesis is about developing efficient representations for probability
distributions over permutations, and inference algorithms which exploit the
structure of these representations for efficiency. Specifically, we study two
complementary approaches which decompose functions over permutations
additively or multiplicatively into simpler, more compact functions.

efficient fourier based representations . Taking inspiration from
signal processing, this thesis extensively explores the idea of additively
decomposing distributions over permutations into a weighted sum of low
frequency Fourier basis functions. Unlike the common discrete Fourier trans-
form appearing ubiquitously in digital applications, Fourier transforms on
permutations are a modern development based on group theory and until
recently, have only been studied theoretically [29]. The work of this thesis,
represents one of the first successful applications of these modern Fourier
analytic methods to machine learning.

efficient fourier based inference . The Fourier theoretic perspec-
tive offers a new approach for approximate probabilistic inference — in
particular, it suggests ignoring high-frequency coefficients and running
probabilistic inference operations by working only with the low frequency
Fourier coefficients. To this end, we introduce fast algorithms for perform-
ing probabilistic inference using these Fourier based representations. As
an example, the prediction operation of hidden Markov model inference
can be written as a convolution over permutations — written in the Fourier
domain, however, it becomes a pointwise product of Fourier coefficients.

Performing probabilistic reasoning algorithms with a truncated Fourier
transform can, unsurprisingly, lead to errors. For a number of common
probabilistic reasoning operations, we provide theoretical results illumi-
nating the nature of error propagation in the Fourier domain. Finally, a
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surprising and theoretically significant result is that many of our algo-
rithms can be applied, essentially unchanged, to performing probabilistic
reasoning operations over any finite or compact Lie group. For example, it
may seem that representing distributions over permutations should require
substantially different mathematics compared to representing distributions
over the rotation matrices or quaternions (which are fundamental to appli-
cations in computer vision and robotics). However, our work shows that
all of these exotic but useful spaces can really be treated within the same
mathematical framework.

exploiting fully independent decompositions for efficient in-
ference. Though polynomial in size, the complexity of Fourier based
representations can grow rapidly, thus posing an obstacle to efficiency that
becomes especially prominent for scenarios in which one must maintain
reasonable estimates for peaked distributions. When the distribution is
sharp, it sometimes makes more sense to decompose the problem into
smaller problems over subsets of objects and to reason about these disjoint
subsets of objects independently of each other. Such independence based
decompositions are what we refer to as multiplicative decompositions.

An even better strategy is to simultaneously take advantage of additive
and multiplicative structure. To do this, we propose algorithms which op-
erate entirely in the Fourier domain for combining factors to form a joint
distribution and factoring a distribution, respectively. We discuss a method
for detecting probabilistic independence using the Fourier coefficients of a
distribution and apply our methods to adaptively decompose large iden-
tity management problems into much smaller ones, improving previous
methods both in scalability and approximation quality.

riffle independent factorizations . While full independence as-
sumptions can sometimes be appropriate for modeling moving groups of
objects, we show that independence assumptions impose strong sparsity
constraints on distributions and are unsuitable for modeling ranking data.
We identify a novel class of independence structures generalizing full in-
dependence, called riffled independence. Compared to fully independent
assumptions, riffled independence captures a more expressive family of
distributions while retaining many of the properties necessary for perform-
ing efficient inference and reducing sample complexity Experimentally, we
show that while items in real ranking datasets are never independent in
the ordinary sense, there are a number of datasets in which items exhibit
approximate riffled independence.

As with full independence, we provide algorithms that can be used in
conjunction with Fourier based decompositions, allowing for both types
of structure to be exploited in conjunction. Specifically, we propose algo-
rithms for joining riffle independent factors and for teasing apart the riffle
independent factors from a joint distribution
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hierarchical factorizations and structure learning . Tak-
ing inspiration from graphical models, which factor according to condi-
tional independence relationships, we introduce a class of probabilistic
models for rankings that factor hierarchically based on riffled independence
relationships. Given a training set of rankings, we propose an automated
method for learning the structure of these hierarchical riffle independent
models from a training set of rankings, and show that our clustering-like
algorithms can be used to discover meaningful latent coalitions from real
ranking datasets. In Irish election datasets, for example, where voters pro-
vide rank-orderings of candidates, we show that the many Irish political
factions are often near riffle independent of each other, thus revealing a
hidden voting pattern that had previously gone unnoticed.

exploiting riffled independence for efficient inference .
Ranking data is often collected from humans in the form of elections and
preference surveys. Due to the fact that it is typically difficult and inconve-
nient for humans to specify long preference lists, however, it is common
for ranking data to come in the form of partial rankings. Consequently, an
important class of inference problems arising in ranking is that of inferring
a distribution over items given a partial ranking of the items — for example,
we may desire an estimate of a user’s preference profile over movies given
his top ten favorite movies.

We establish a fundamental connection between the notion of riffled
independence and partial ranking, proving first that it is possible to exploit
riffled independence relationships among items to condition on partial
rankings in time linear in the number of model parameters. We show that
general inference queries which would ordinarily be amenable to efficient
inference under ordinary independence assumptions are not efficiently
handled under riffled independence assumptions. And in fact, we are
able to establish in a rigorous sense that partial rankings are the only
observations for which one can exploit riffled independence for efficient
condition.

1.5 thesis organization

The thesis is organized into four parts. See Figure 3 for a roadmap of
the thesis, showing how each chapter addresses one or both of our two
main problems of representation and inference using either additive or
multiplicative decompositions.

part i. In the remainder of the first part of the thesis, we introduce
notation and many of the basic properties of permutations that will be used
throughout this thesis (Chapter 2). We introduce the symmetric group,
distributions over the symmetric group as well as some of the basic proba-
bilistic operations that one might want to perform using these distributions
(Chapter 3).
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Ch. 5: Fourier Analysis on the 

Symmetric Group

Ch. 4: Overview of Fourier-based Probabilistic Decompositions

Ch. 6: Tableaux 

Combinatorics and Algorithms

Ch. 7: Common Probabilistic 

Models and their Fourier Transforms

Ch. 8: Probabilistic Reasoning 

in the Fourier Domain

Ch. 9: Approximate 

Bandlimited Inference

Ch. 11: Overview of Independence-Based Probabilistic Decompositions

Ch. 12: Fully Independent Decompositions

Ch. 13: Beyond full independence: 

riffled independence for rankings

Ch. 14: Discovering Riffled 

Independence Structure in Ranked Data

Ch. 15: Exploiting Riffled 

Independence for 

Probabilistic Inference

Figure 3: A roadmap of this thesis, outlining how each chapter addresses one or both
of our two main problems (representation and inference with distributions over
permutations) using one of the two main decompositions (additive and multiplica-
tive).

part ii. We discuss additive decompositions of distributions over permuta-
tions. By projecting a distribution to low-frequency Fourier basis functions,
we are able to achieve compact representations of probability distributions
over permutations. We provide an accessible overview of group representa-
tion theory, the foundation upon which Fourier analysis for the symmetric
group is based (Chapter 5), as well as specific representation theoretic
algorithms for the symmetric group (Chapter 6). Using the tools of repre-
sentation theory, we construct Fourier transforms of common probabilistic
models (Chapter 7) and formulate efficient Fourier theoretic counterparts
of the probabilistic operations described in Part I (Chapter 8). We dis-
cuss issues concerning approximation quality (Chapter 9), where we also
present an empirical evaluation of our methods on challenging multi-target
tracking problems.

part iii. We discuss how multiplicative decompositions, based on the no-
tion of probabilistic independence, can additionally be used as a comple-
mentary approach in obtaining even more efficient probabilistic representa-
tions and inference algorithms (Chapter 12). We introduce a novel general-
ization of probabilistic independence called riffled independence (Chapter 13).
By exploiting riffle independent relationships among ranked items, we ob-
tain structure and parameter learning algorithms that are efficient both
with respect to running time and sample complexity (Chapter 14). By es-
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12 introduction

tablishing a fundamental theoretical connection between partial ranking
and riffled independence, we are able to extend our algorithms to learn
models from partially ranked data, which is far more common than fully
ranked data (Chapter 15). For both ordinary probabilistic independence
and riffled independence, we design efficient Fourier theoretic algorithms
capable of computing factors and joint distributions from low-order Fourier
coefficients.

part iv. Finally we discuss a number of remaining open problems (Chap-
ter 17). We conclude by summarizing the major contributions of this thesis
and reiterating the major mathematical themes that buttress the thesis
(Chapter 18).
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2
P E R M U TAT I O N S A N D T H E S Y M M E T R I C G R O U P

IN this chapter, we provide background on the group of permutations and
introduce many of the preliminaries as well as terminology for this thesis.

In particular, we introduce a number of the basic algorithms associated
with the symmetric group. We remark that all of the definitions as well
as theoretical results in this chapter appear in most modern and classical
algebra textbooks such as [83, 32], but are here presented from a perhaps
more algorithmic viewpoint.

2.1 permutations and their many notations

A permutation on n elements is a one-to-one mapping of the set Ω =

{1, . . . ,n}, into itself and can be written as a tuple,

σ = [σ(1) σ(2) . . . σ(n)],

where σ(i) denotes where the ith element is mapped under the permutation.
For example, σ = [2 3 1 4 5] means that σ(1) = 2, σ(2) = 3, σ(3) = 1,
σ(4) = 4, and σ(5) = 5. The tuple [1 1 2 5], on the other hand, is not a proper
permutation since it is not one-to-one. This way of notating permutations
is called one-line notation, and is perhaps the most convenient notation for
programming.

The set of all permutations on n elements forms a group1 under the
operation of function composition — that is, if σ1 and σ2 are permutations,
then

σ1σ2 = [σ1(σ2(1)) σ1(σ2(2)) . . . σ1(σ2(n))],

is itself a permutation. Additionally, for every permutation σ, there is an in-
verse permutation σ−1 since permutations are one-to-one mappings. Finally,
the identity permutation is the permutation ε which maps every element
to itself (i.e., ε = [1 2 . . . n]). See Algorithms 2.1 and 2.2 for pseudocode
implementing permutation composition and inversion, respectively.

Definition 1. The set of all n! permutations is called the symmetric group, or
just Sn. In addition to the set {1, . . . ,n}, we will also consider permutations
of a general set Ω, in which case we notate the corresponding group as SΩ.

Example 2. There are 4! = 24 elements in the group S4. Consider two elements
of S4, σ1 = [1 3 4 2] and σ2 = [3 1 2 4]. Then σ1σ2 = [4 1 3 2]. The inverse of σ1
is σ−11 = [1 4 2 3].

Notably, the group operation for permutation is noncommutative, and so Sn
is not an abelian group for n > 3. With σ1 and σ2 set as above, We have, for
example, σ1σ2 = [4 1 3 2], but σ2σ1 = [3 2 4 1].

1 See Appendix A for a list of the basic group theoretic definitions used in this thesis.

13
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14 permutations and the symmetric group

Algorithm 2.1: Algorithm for composing two permutations (one-line notation).
Input: two elements σ1,σ2 ∈ Sn, Output: σ1σ2.

compose(σ1,σ2):

Initialize result to be an integer array of length n;
for i = 1, . . . ,n do

result← σ1[σ2[i]];
end
return result ;

Algorithm 2.2: Algorithm for inverting a permutation (one-line notation). Input:
σ ∈ Sn, Output: σ−1.

invert(σ):

Initialize result to be an integer array of length n;
for i = 1, . . . ,n do

result[σ[i]]← i;
end
return result ;

2.1.1 Cycle notation

Another common way to notate the elements of Sn uses the perhaps
more standard cycle notation, in which a cycle (i, j,k, . . . , `) refers to the
permutation which maps i to j, j to k, . . . , and finally ` to i. Though
not every permutation can be written as a single cycle, any permutation
can always be written as a product of disjoint cycles. For example, the
permutation σ = [2 3 1 4 5] written in cycle notation is σ = (1, 2, 3)(4)(5).
The number of elements in a cycle is called the cycle length and we typically
drop the length 1 cycles in cycle notation when it creates no ambiguity —
in our example, σ = (1, 2, 3)(4)(5) = (1, 2, 3). Items falling in the length 1

cycles of a permutation σ are referred to as the fixed points of σ. The cycle
type of a permutation σ is the (unordered) tuple of cycle lengths of σ. For
example, the cycle type of σ = (1, 2, 3)(4, 5) is (3, 2). See Algorithm 2.3 for
a simple algorithm which converts one-line notation to cycle notation.

There are several advantages which sometimes make cycle notation more
convenient than one-line notation. Transpositions, or swaps of two elements
i and j, for example, can simply be denoted as a two-cycle (i, j). It is
also particularly simple to invert a permutation which is written in cycle
notation by simply “flipping” each cycle. For example, if σ = (1, 2, 3)(4, 5),
then its inverse is σ−1 = (3, 2, 1)(5, 4).

2.1.2 Ordering/Vertical bar notation for rankings

For many ranking applications it will be more convenient to refer to a per-
mutation σ by specifying its corresponding inverse as σ−1(1)|σ−1(2)| . . . |σ−1(n)
in what is typically called ordering or vertical bar notation. We say that σ
ranks item a before (or over) item b if the rank of a is less than the rank of b
(σ(a) < σ(b)). The reason for using both notations is due to the fact that
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2.1 permutations and their many notations 15

Algorithm 2.3: Algorithm for converting a permutation from one-line notation
to cycle notation. The output is a disjoint array of tuples (cycles) whose product
((allcycles[0])(allcycles[1]) . . . (allcycles[`])) results in the given permutation σ.
Note that since the cycles are disjoint, the order of multiplication does not matter
here, though it will matter for later related algorithms.

toCycle(σ ∈ Sn):

Initialize integer numcovered to be zero;
Initialize array covered to be a length n array of zeros;
Initialize (ordered) list allcycles to be empty;
while numcovered < n do

Initialize integer start to be zero ;
while covered[start] == 1 do

start← start+ 1;
end
Initialize array newcycle to be a length 1 array with newcycle[1] = start;
covered[start]← 1;
numcovered← numcovered+ 1;
Initialize pos to be σ(start);
while pos != start do

Append pos to the end of newcycle;
covered[pos]← 1 ;
numcovered← numcovered+ 1;
pos← σ(pos);

end
Append newcycle to the end of allcycles;

end
return allcycles ;

certain concepts will be more intuitive to express using either the ranking
or ordering notation. For example

Example 3. As one of the running example in this thesis, we will consider ranking
a small list of 6 items consisting of foods enumerated below:

1. Corn (C) 2. Peas (P) 3. Lemons (L)

4. Oranges (O) 5. Figs (F) 6. Grapes (G)

Written in one-line notation, the ranking σ = [3 1 5 6 2 4] means, for example,
that Corn is ranked third, Peas is ranked first, Lemons is ranked fifth, and so on.
In vertical bar notation, the same ranking is expressed as:

σ = Peas | Figs |Corn |Grapes |Lemons |Oranges.

Finally we will use σ(3) = σ(L) = 5 to denote the rank of the third item, Lemons.

2.1.3 Mappings between distinct input/ouput domains

In many applications, we will abuse notation by using ‘permutation’ to refer
to a one-to-one mapping between two distinct domains of equal cardinality
(instead of mappings of a domain to itself). For example, in tracking, a
permutation may map a set of identities to a set of tracks. Or a permutation
may equivalently map a set of tracks to a set of identities. In ranking, on the
other hand, a permutation may map a collection of items or candidates to
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16 permutations and the symmetric group

Algorithm 2.4: Algorithm for lexicographically enumerating all elements of Sn.
Input: sorted array of items, X (to enumerate Sn, X = [1, 2, . . . ,n]). Output: All
permutations of items in X.

enumeratePerms(X):

Initialize result to be an empty array (of permutations);
if |X| == 1 then

Append X to result;
return result;

end
for i =|X |,|X |-1,. . . ,1 do

tmp← enumeratePerms([X[1], . . . ,X[i− 1],X[i+ 1], . . . ,X[n]]);
Append X[i] to the end of each element of tmp;
Append each element of tmp to result;

end
return result ;

a set of ranks. The ranking of the item set {Corn,Peas,Lemons} for which
π(Corn) = 1, π(Peas) = 2, and π(Lemons) = 3, for example, designates
Corn as the most preferred item.

Since the input and output domains of a ranking are not the same in
any of the above applications, it does not make sense to, for example,
compose two rankings. For this reason, the collection of rankings (as well
as mappings between identities and tracks) does not technically form a
group. To treat one-to-one mappings between distinct domains, one can
simply fix some reference ranking (or a reference numbering) of the input
and output domains. With respect to this reference ranking, it is possible to
associate every ranking with a unique permutation which can be thought
of as the ‘deviation’ of the ranking from the original reference ranking. In
the parlance of group theory, there is a faithful group action of Sn on the
collection of rankings.

Example 4. If we fix a reference ranking π0 such that π0(Corn) = 1, π0(Peas) =
2, and π0(Lemons) = 3 then the permutation σ = [3 2 1] is associated to the
ranking which maps Corn to σ(π0(Corn)) = 3, Peas to σ(π0(Peas)) = 2, and
Lemons to σ(π(Lemons)) = 1.

In the examples which can be found in this thesis, we will typically fix
the reference ranking of a set of items to be alphabetical. For example, the
reference ranking of the set Ω = {Corn,Peas} is always assumed to be
π0(Corn) = 1 and π0(Peas) = 2. This issue of the reference ranking will
arise in a number of applications as it will be necessary in many algorithms
to ‘reorder’ the items, or change the underlying reference ranking.

2.2 enumeration and indexing

In this thesis we will typically enumerate permutations with respect to
a reverse lexicographical ordering obtained when reading the one-line
notation of each permutation from right to left. For simplicity, we will refer
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Figure 4: Structure of symmetric group allows for recursive enumeration.

to the ordering simply as the “lex” ordering. For example, the lex ordering
of S3 is:

[1 2 3], [2 1 3], [1 3 2], [3 1 2], [2 3 1], [3 2 1].

There is a simple recursive method for enumerating elements of Sn with
respect to lexicographical order (given in Algorithm 2.4). The recursion is
based on fixing item n to map to n, n− 1, . . . , 1, and each for each fixed
target, enumerating the permutations of a smaller group isomorphic to
Sn−1. For example, to enumerate the elements of S3, one fixes σ(3) = 3 and
enumerates the permutations of {1, 2}, then fixes σ(3) = 2, and enumerates
the permutations of {1, 3} then finally fixes σ(3) = 1 and enumerates the
permutations of {2, 3}. See Figure 4 for a diagram of the recursive structure
in the lexigraphical enumeration algorithm.

Note that since there are n! factorial permutations, one rarely uses
Algorithm 2.4 to enumerate over all permutations (except for very small
n). Instead, it is more useful for debugging and ‘sanity check’ purposes.
Algorithm 2.5 provides a related algorithm which, given any element of
Sn, returns its index within the lex ordering of Sn. We have also chosen
to present the enumeration algorithm here because the same recursive
structure in which one reduces a problem over Sn to n problems over Sn−1
is mirrored in many algorithms throughout the thesis. In particular, the
FFT (Fast Fourier transform which we present in later chapters) will rely
on a very similar algorithmic decomposition.

2.3 generating sets of the symmetric group

The fundamental computational challenge that this thesis addresses is that
of dealing with the factorial number of possible permutations. One of the
main insights which we rely upon repeatedly throughout to work with
such a large collection of objects is the idea that permutations can be always
be decomposed into the composition of a number of simpler ‘parts’.
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18 permutations and the symmetric group

Algorithm 2.5: Algorithm for computing the index of a permutation with
respect to lexicographical ordering. Here end refers to the last element of σ (viewed
as an array), and σ1:end−1 is the array obtained by dropping the last element of σ.

permToIndex(σ ∈ Sn):

if |σ| == 1 then
return 1;

end
j← (|σ|− 1)! · |{i : σ(i) > σ(end)}| ;
return j+permToIndex (σ1:end−1) ;

Formally, we accomplish these decompositions through the use of gener-
ating sets of a group.

Definition 5. A finite group G (think Sn) is generated by a generating set
X = {σ1, . . . ,σm} if every element of G can be written as a finite product of
elements in X and their inverses; i.e., every element g ∈ G can be written:

g = xε11 x
ε2
2 · · · x

ε`
` ,

where xi ∈ X and εi ∈ {+1,−1} for all i.

Of course, the entire group Sn is a valid generating set, but we are
especially interested in small generating sets, in which we can understand
each permutation as being constructed from a set of only, say, a handful of
permutations. In particular, we will argue that the following three sets are
all generating sets for Sn:2

• All pairwise transpositions:

Xa = {(i, j) : 1 6 i < j 6 n},

• Adjacent pairwise transpositions:

Xb = {(i, i+ 1) : 1 6 i < n},

• Two-element generating set:

Xc = {(1, 2), (1, 2, 3, . . . ,n)}.

Example 6. As an example, we note that the permutation σ = (1, 4, 2, 3) can be
factored with respect to each of the above generating sets:

(1, 4, 2, 3) = (2, 3)(1, 3)(1, 4), (pairwise transpositions)

= (2, 3)(1, 2)(3, 4)(2, 3)(1, 2), (adjacent transpositions)

= βαβ3αβ2αβ3αβ3α. (where α = (1, 2), and β = (1, 2, 3, 4))

2 Note that for our discussion of generating sets, we will rely mostly on cycle notation for
convenience.
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Algorithm 2.6: Algorithm for decomposing a permutation σ into a product of
transpositions of the form (i, j).

permToSwaps(σ ∈ Sn)

(a
(1)
1 , . . . , a(1)

m(1))(a
(2)
1 , . . . , a(2)

m(2)) . . . (a
(`)
1 , . . . , a(`)

m(`))← toCycle(σ) ;
Initialize (ordered) list allcycles to be empty;
for i = 1, . . . , ` do

for j = mi, . . . , 2 do
Append the transposition (a

(i)
1 , a(i)j ) to the end of allcycles;

end
end
return allcycles ;

The idea that permutations can be factored into a sequence of elements
in a generating set is so useful that we will discuss each of the above gener-
ating sets in some detail. In the following, we present factoring algorithms
which express a given permutation with respect to each generating set
above.

We also present bounds on the number of generating elements required
to construct a given permutation. We note that there are often many ways
to express any given permutation in terms of a generating set and so the al-
gorithms given below only produce one of many valid decompositions. The
minimum such number of terms plays a role in the analysis of complexity
for some of the algorithms in the thesis.

Definition 7. Given a generating set X of a group G, the wordlength of an
element σ ∈ G with respect to X, LX(σ), is the minimum ` for which σ
is expressible as g = xε11 x

ε2
2 · · · x

ε`
` , where xi ∈ X and εi ∈ {+1,−1} (see

Definition 5).

2.3.1 From pairwise transpositions

We first show an easy algorithm for writing any permutation as product of
pairwise transpositions based on the following lemma, which shows that
any length m cycle can be written as a product of m− 1 transpositions.

Lemma 8. The cycle (a1,a2, . . . ,am) factors as a product of m− 1 transposi-
tions.

Proof.

(a1,a2, . . . ,am) = (a1,am)(a1,am−1)(a1,am−2) · · · (a1,a2).

To decompose a given permutation σ as a finite product of cycles, one
can simply use Lemma 8 (Algorithm 2.3) to replace each cycle by a finite
product of transpositions. See Algorithm 2.6 for pseudocode. How many
transpositions are required to express any permutation? We now show that
the answer is: no more than n− 1.
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20 permutations and the symmetric group

Algorithm 2.7: Algorithm for decomposing a permutation σ into a product of
adjacent transpositions of the form (i, i+ 1). Note that this algorithm is very similar
to the well-known Bubblesort algorithm.

permToAdjSwaps(σ ∈ Sn):

for i = 1, 2, . . . ,n do
for j = n,n− 1 . . . , i+ 1 do

if σ[j] < σ[j− 1] then
swap (σ[j],σ[j− 1]);
Append transposition (j, j+ 1) to the beginning of result;

end
end

end
return result ;

Proposition 9. The maximum wordlength with respect to Xa (the set of pairwise
transpositions) bounded above by n− 1 (maxσ∈Sn LXa(σ) 6 n− 1).

Proof. The length of the decomposition of a permutation σ produced by
Algorithm 2.6 is an upper bound on the wordlength of σ and cannot exceed
n− 1 since the cycle decomposition of Algorithm 2.3 produces disjoint
cycles, and the reduction of a length m cycle to transpositions by Lemma 8

results in m− 1 terms. On the other hand n− 1 is the wordlength of the
worst case which occurs when σ takes the form of an n-cycle, in which case
the number of transpositions produced by the decomposition is exactly
n− 1.

2.3.2 From adjacent swaps

Lemma 10. For any distinct i, j ∈ {1, . . . ,n}, the transposition (i, j) factors as a
product of adjacent transpositions.

Proof. Without loss of generality, assume that i < j. Then we have:

(i, j) = (i, i+ 1)(i+ 1, i+ 2) · · · (j− 2, j− 1)(j− 1, j)
(j− 2, j− 1) · · · (i+ 1, i+ 2)(i, i+ 1).

One way to write an arbitrary permutation as product of adjacent trans-
positions is, as before, to call Algorithm 2.6 to write a permutation σ as a
product of (i, j) transpositions, then use Lemma 10 to replace each transpo-
sition as a product of adjacent transpositions. In Algorithm 2.7 we present
an alternative method based on an idea similar to the Bubblesort algorithm
for sorting.

The maximum wordlength in the case of adjacent transpositions is O(n2).

Proposition 11. The maximum wordlength with respect to Xb is bounded above
by n(n−1)2 .
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2.3 generating sets of the symmetric group 21

Proof. To compute an upper bound on maxσ∈Sn LXa(σ), it is enough to
consider the worst case for any algorithm which factors permutations
into adjacent transpositions. Algorithm 2.7, for example, adds at most one
transposition to the factorization per iteration and terminates after n(n−1)2

iterations, and therefore the wordlength of any permutation σ can be no
greater than n(n−1)

2 .

kendall’s tau distance metric on rankings. The number of
transpositions produced by Algorithm 2.7 can be used as a distance mea-
sure on the space of permutations. Given two permutations σ1,σ2 ∈ Sn, the
size of the decomposition of σ1σ−12 into adjacent transpositions via Algo-
rithm 2.7 can be thought of as the number of swaps (of adjacent elements)
necessary to transform σ1 into σ2. Interpreting the result as a distance
metric yields the well known Kendall’s tau distance metric [71] (denoted
henceforth as dK), which is sometimes also called the Bubblesort distance
since it reflects the number of iterations required to “Bubblesort” σ1 to
become σ2.

Example 12. Let σ1 = [3 1 4 2] and σ2 = [1 2 3 4]. To compute the Kendall’s
tau distance between σ1 and σ2, we need to use Algorithm 2.7 to decompose
the permutation σ1σ−12 = [3 1 4 2], which yields the factorization: [3 1 4 2] =

(2, 3)(1, 2)(3, 4), and therefore dK(σ1,σ2) = 3.

2.3.3 A generator set with two elements

The smallest generating set for the symmetric group, Xc, has only two
elements, a transposition (1, 2), and an n-cycle. To show that Xc generates
the entire symmetric group, it is enough to show that every adjacent
transposition can be written in terms of elements in Xc:

Lemma 13. The adjacent transposition (i, i+ 1) can be written as a product of
elements in Xc.

Proof.

(i, i+ 1) = (1, 2, . . . ,n)i−1(1, 2)(1, 2, . . . ,n)n−i+1.

While the generating set Xc has only two elements, however, it has a
maximum wordlength of O(n3).

Proposition 14. The maximum wordlength with respect to Xc is bounded above
by n(n−1)(n+1)2 .

Proof. There are n+ 1 elements of Xc necessary to generate an arbitrary
adjacent transposition. Multiplying by at most n(n−1)2 adjacent transposi-
tions necessary to generate an arbitrary permutation (as guaranteed) by
Proposition 11, we see that maxσ∈Sn LXc(σ) 6

n(n−1)(n+1)
2 .
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(4,1,2,3)
(4,2,1,3)

(3,2,1,4)

(3,1,2,4)
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(1,2,3,4)

(1,2,4,3)

(1,3,2,4)

(2,1,4,3)

(2,3,1,4)

(3,1,4,2)

(4,1,3,2)

(4,2,3,1)

(3,2,4,1)
(2,4,1,3)

(1,4,2,3)

(1,3,4,2)

(2,3,4,1)

(1,4,3,2)

(2,4,3,1)

(3,4,2,1)

(4,3,2,1)

(4,3,1,2)

(3,4,1,2)

Figure 5: The Cayley graph on the group S4 with the adjacent transpositions as
generators.

2.3.4 The Cayley graph of the symmetric group.

A simple way to visualize the symmetric group (for very low n) is via
its Cayley graph. Given a generating set X, the Cayley graph associates
each permutation σ ∈ Sn with a vertex vσ. Additionally, for each σ ∈ Sn
and generator πX ∈ X, there is an edge connecting σ with σπX. Figure 5

plots the Cayley graph for the symmetric group on 4 items, S4, when the
generating set consists of adjacent permutations. We will revisit Cayley
graphs in our discussion of Fourier analysis in Chapter 5.

2.4 subgroups and cosets

Another way to factor or decompose permutations into simpler parts is
to use coset decompositions of the symmetric group, in which the group of
permutations is partitioned into ‘translations’ of some subgroup. There are
two subgroups in particular that we rely on.

subgroups of the form sp ⊂ sn . We will identify Sp, the symmetric
group on p items, isomorphically with the following subgroup of Sn in
which all but the first p items are fixed to map to themselves:

Sp = {σ ∈ Sn : σ(i) = i, for all i > p}.

For example, S2 can be viewed as the subgroup of permutations in S3
which fix item 3 to map to 3.

Left-cosets of Sp in Sn then take the form:

πSp = {πσp : σp ∈ Sp ⊂ Sn},
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1|2|3|4,

1|2|4|3,

2|1|3|4,

2|1|4|3

 ,


1|3|2|4,

2|3|1|4,

1|4|2|3,

2|4|1|3

 ,


1|3|4|2,

2|3|4|1,

1|4|3|2,

2|4|3|1

 ,


3|1|4|2,

3|2|4|1,

4|1|3|2,

4|2|3|1

 ,


3|1|2|4,

3|2|1|4,

4|1|2|3,

4|2|1|3

 ,


3|4|1|2,

3|4|2|1,

4|3|1|2,

4|3|2|1


Figure 6: The collection of left S2 × S2-cosets of S4. To make the interleaving

intuition clearer, we write the permutations here using the vertical bar
notation explained in Section 2.1.2. Items from set A = {1, 2} are colored
in red and items from set B = {3, 4} are colored in blue.

where π is some fixed element of Sn, and can be thought of as the subset
of permutations which agree with π on the last n− p items of the input
domain. For example, if π = [3 2 1], the coset πS2 is the collection of
permutations which map item 3 to 1 since π(3) = 1:

πS2 = {[3 2 1][1 2 3], [3 2 1][2 1 3]} = {[3 2 1], [2 3 1]} = {σ ∈ Sn : σ(3) = 1}.

Similarly, right-cosets of Sp take the form:

πSp = {πσp : σp ∈ Sp ⊂ Sn},

where π is again some fixed element of Sn, and can be thought of as
the subset of permutations which agree with π on the last n− p items of
the output domain. For example, if π = [3 2 1], then the coset S2π is the
collection of permutations which map item 1 to 3 to blah since π(1) = 3.

subgroups of the form sp × sq ⊂ sn . We will also refer to the sub-
group Sp × Sq ⊂ Sn (where p+ q = n) defined as:

Sp× Sq = {σ ∈ Sn : σ(i) 6 p for all i 6 p (and σ(i) > p for all i > p)}.

(2.1)

Sp × Sq can be thought of as the subgroup of permutations which per-
mute the first p items amongst themselves and the remaining q items
amongst themselves, but do not allow for items from one subset to map
to the other subset. For example, S2 × S2 consists of the permutations
[1 2 3 4], [2 1 3 4], [1 2 4 3], and [2 1 4 3]. Going beyond just two subsets, it can
be generalized to Sp1 × Sp2 × · · · × Sp` , where

∑`
i=1 pi = n.

The left Sp × Sq-cosets are:

τ(Sp × Sp) = {τσpq : σpq ∈ Sp × Sq},
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where again τ is some fixed element of Sn. We are particularly interested
in left Sp × Sq-cosets (see Chapter 13 for example) since they correspond
to the collection of ways to interleave the two sets A = {1, . . . ,p} and
B = {p+ 1, . . . ,n}.

We say that two permutation τ1 and τ2 interleave A and B in the
same way if the sets {τ1(1), . . . , τ1(p)} and {τ2(1), . . . , τ2(p)} (and {τ1(p+

1), . . . , τ1(n)} and {τ2(p+ 1), . . . , τ2(n)}) are equal. For example, the per-
mutations τ1 = [1 3 4 2] and τ2 = [3 1 2 4] can be said to interleave the
sets A = {1, 2} and B = {3, 4} in the same way. We now show that the left
Sp × Sq-cosets partition the symmetric group into equivalence classes in
which each coset corresponds to a permutation which interleave A and B
in the same way. Consequently, each left Sp × Sq-coset as defined above
can be identified with a unique interleaving of A and B.

Proposition 15. Consider any two permutations τ1, τ2 ∈ Sn which interleave A
and B in the same way. Then the corresponding left Sp × Sq-cosets, τ1(Sp × Sq)
and τ2(Sp × Sq) must be the same.

Proof. Let π = τ−11 τ2. Since τ1 and τ2 interleave A and B in the same way,
we have 1 6 π(i) 6 p for all 1 6 i 6 p and similarly that p+ 1 6 pi(i) 6 n
for all p+ 1 6 pi(i) 6 n. Therefore π is an element of Sp × Sq. Finally, we
have that τ2(Sp × Sq) = τ1π(Sp × Sq) = τ1(Sp × Sq).

Example 16. In Figure 6, we present the left S2 × S2-cosets of S4. To make the
interleaving intuition clearer, we write the permutations here using the vertical
bar notation explained in Section 2.1.2. As can be seen, S4, which consists of
24 elements is partitioned into 6 S2 × S2-cosets of 4 elements each. Each coset
corresponds to a unique way of interleaving sets A = {1, 2} and B = {3, 4}. The
cosets can therefore be summarized as:

{A|A|B|B, A|B|A|B, A|B|B|A, B|A|B|A, B|A|A|B, B|B|A|A}.

2.5 summary

In this chapter, we have presented the elementary operations for the sym-
metric group as well as different ways for notating permutations. One of
the main themes that we emphasize in this chapter is that permutations can
often be decomposed into simpler pieces. For example, we discussed how
one can factor any permutation into a product of adjacent transpositions.
In later chapters, we will extend this theme of decomposability not just for
permutation but also to distributions over permutations, which is the focus of
our next chapter.
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3
P R O B A B I L I T Y D I S T R I B U T I O N S O N T H E S Y M M E T R I C
G R O U P

REASONING with probability distributions over the symmetric group
is the central theme of this dissertation. In this chapter, we introduce

many of the basic probabilistic concepts and operations related to per-
mutations. Many of the computations in this chapter scale factorially in
the number of items being ranked, or objects being tracked, necessitating
approximate approaches. These computational challenges will form the
main body of our work in later chapters, but we begin by introducing exact
probabilistic operations, while ignoring complexity.

3.1 distributions on the symmetric group

A distribution h(σ), defined over the group of permutations can be viewed
as a joint distribution over the n variables (σ(1), . . . ,σ(n)) (where σ(j) ∈
{1, . . . ,n}), subject to mutual exclusivity constraints which stipulate that two
objects cannot simultaneously map to the same rank, or alternatively, that
two ranks cannot simultaneously be occupied by the same object. Thus,
we have that h(σ(i) = σ(j)) = 0 whenever i 6= j. It is due to this fact that
all of the σ(i) are coupled in the joint distribution, that typical approaches
from the machine learning community such as graphical models, which
might have otherwise exploited an underlying conditional independence
structure, are ineffective.

We will commonly refer to the uniform and delta distributions over per-
mutations, defined as:

U(σ) =
1

n!
, for all σ ∈ Sn, and δπ0(σ) =

{
1 if σ = π0

0 otherwise
. (3.1)

The fact that there are factorially many possible rankings poses a number
of significant challenges for learning and inference. First, there is no way to
tractably represent arbitrary distributions over rankings for large n. Storing
an array of 12! doubles, for example, requires roughly 14 gigabytes of
storage, which is beyond the capacity of a typical modern PC. Second,
the naive algorithmic complexity of common probabilistic operations is
also intractable for such distributions. As we discuss later, computing the
marginal probability, h(σ(i) < σ(j)), that item i is preferred to item j, for
example, requires a summation over O((n− 2))!) elements. Finally, even if
storage and computation issues were resolved, one would still have sample
complexity issues to contend with — for nontrivial n, it is impractical to
hope, for example, that each of the n! possible rankings would appear even
once in a training set of rankings. The only existing datasets in which every
possible ranking is realized are those for which n 6 5, and in fact, the APA

25
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dataset (discussed below in Section 3.4) is the only such dataset for n = 5

that we are aware of.

3.2 probabilistic reasoning with permutations

Ignoring tractability for now, we introduce in this section a number of
common and useful probabilistic manipulations that arise in permutation
problems. As a prelude, we set up a simple probabilistic inference problem
that commonly arises in multitarget tracking called the identity management
problem.

3.2.1 The identity management problem

In this problem, we observe a stream of localization data from three people
walking inside a room (illustrated in Figure 7). Except for a camera posi-
tioned at the entrance, however, there is no way to distinguish between
identities once they are inside. In this example, an internal tracker declares
that two tracks have ‘mixed’ whenever they get too close to each other and
announces the identity of any track that enters or exits the room.

In our particular example, three people, Alice, Bob and Cathy, enter a
room separately, walk around, and we observe Bob on Track 1 as he exits
the room. The events for our particular example in the figure are recorded
in Table 1. The inference problem that we must solve is: after the third event,
who is at Tracks 1 and 2? In fact, in our toy example, there is a simple
solution. Since Tracks 2 and 3 never mix, we know that Cathy cannot be in
Track 2 in the end, and furthermore, since we observe Bob to be in Track 1

when he exits, we can deduce that Cathy must have been in Track 3, and
therefore Alice must have been in Track 2. Our simple example illustrates
the combinatorial nature of the problem — in particular, reasoning about
the mixing events allows us to exactly decide where Alice and Cathy were
even though we only made an observation about Bob at the end.

Event # Event Type

1 Tracks 1 and 2 mixed

2 Tracks 1 and 3 mixed

3 Observed Identity Bob at Track 1

Table 1: Table of Mixing and Observation events logged by the tracker.

3.2.2 Hidden Markov models on the symmetric group

In identity management, a permutation σ represents a joint assignment
of identities to internal tracks, with σ(i) being the track belonging to the
ith identity. When people walk too closely together, their identities can
be confused, leading to uncertainty over σ. To model this uncertainty,
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(a) Before (b) After

Figure 7: Identity Management example. Three people, Alice, Bob and Charlie
enter a room and we receive a position measurement for each person
at each time step. With no way to observe identities inside the room,
however, we are confused whenever two tracks get too close. In this
example, Track 1 crosses with Track 2, then with Track 3, then leaves the
room, at which point it is observed that the identity at Track 1 is in fact
Bob.

σ1 σ2 σ3 σ4

. . .

z1 z2 z3 z4

. . .

Figure 8: Hidden Markov model over permutations.

we use a Hidden Markov Model (HMM) on permutations, which is a joint
distribution over latent permutations σ(1), . . . ,σ(T), and observed variables
z(1), . . . , z(T) which factors as:

h(σ(1), . . . ,σ(T), z(1), . . . , z(T)) = h(σ(1))h(z(1)|σ(1))
T∏
t=2

h(zt|σ(t)) · h(σ(t)|σ(t−1)).

Figure 8 is an independence diagram illustrating the conditional indepen-
dence relationships implied by the factorization. The conditional probability
distribution h(σ(t)|σ(t−1)) is called the transition model, and might reflect,
for example, that the identities belonging to two tracks were swapped with
some probability by a mixing event. The distribution P(h(t)|σ(t)) is called
the observation model, which might, for example, capture a distribution over
the color of clothing for each individual.

We will be particularly concerned with the filtering problem, in which one
queries the HMM for the posterior distribution at some time step, condi-
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tioned on all past observations. Given the distribution h(σ(t)|z(1), . . . , z(t)),
we recursively compute the posterior at time t+1, h(σ(t+1)|z(1), . . . , z(t+1)),
in two steps: a prediction/rollup step and a conditioning step. Taken together,
these two steps form the well known Forward Algorithm [111]. The predic-
tion/rollup step multiplies the distribution by the transition model and
marginalizes out the previous time step:

h(σ(t+1)|z(1), . . . , z(t)) =
∑
σ(t)

h(σ(t+1)|σ(t))h(σ(t)|z(1), . . . , z(t)). (3.2)

The conditioning step conditions the distribution on an observation z(t+1)

using Bayes rule,

h(σ(t+1)|z(1), . . . , z(t+1)) ∝ h(z(t+1)|σ(t+1))h(σ(t+1)|z(1), . . . , z(t)). (3.3)

These probabilistic inference operations which we have introduced in
the context of filtering for HMMs in fact appear ubiquitously in more
general probabilistic inference settings. Below we introduce the probabilistic
operations that will be considered in this thesis.

3.2.3 Probabilistic operations

Our first two operations are the prediction/rollup and conditioning opera-
tions from above which are applicable in settings beyond hidden Markov
models.

Prediction/Rollup operation:

h(σ(t+1)) =
∑
σ(t)

h(σ(t+1)|σ(t))h(σ(t)). (3.4)

Since there are n! permutations, a single iteration of the algorithm re-
quires O((n!)2) flops and is consequently intractable for all but very small
n. Bayesian conditioning, on the other hand, which requires a pointwise
multiplication of a likelihood function and a prior distribution, has a run-
ning time of O(n!) in general:

Bayesian conditioning operation:

h(σ|z) ∝ h(z|σ)h(σ). (3.5)

Additionally, it is often the case that one desires a normalized posterior
distribution which requires summing over n! terms:

Normalization:

Z =
∑
σ∈Sn

h(σ). (3.6)

In other cases, one simply wants to maximize the posterior, finding the
ranking or identity-to-track permutation which attains the highest likeli-
hood under the posterior distribution, which also has O(n!) running time
in general:
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Maximization:

σ̂ = arg max
σ∈Sn

h(σ). (3.7)

Below, we present several more operations which require some more
explanation: convolution, shifting, restriction, and embedding.

convolution. Instead of focusing on prediction/rollup operations
(Equation 3.4) in full generality, we will typically consider one particularly
useful class of transition models — that of random walks over a group,
which assumes that σ(t+1) is generated from σ(t) by drawing a random per-
mutation π(t) from some distribution q(t) and setting σ(t+1) = π(t)σ(t).1

In our identity management example, π(t) represents a random identity
permutation that might occur among tracks when they get close to each
other (what we call a mixing event). For example, q((1, 2)) = 1/2 means
that Tracks 1 and 2 swapped identities with probability 1/2. The random
walk model also appears in many other applications such as modeling card
shuffles [29], which we will consider again in Chapter 13.

The motivation behind the random walk transition model is that it allows
us to write the prediction/rollup operation as a convolution of distributions
on a group. The extension of the familiar notion of convolution to groups
simply replaces additions and subtractions by analogous group operations
(function composition and inverse, respectively):

Definition 17. Let f and g be probability distributions on a group G. Define
the convolution of f and g to be the function:

Convolution:

[f ∗ g] (σ1) =
∑
σ2

f(σ1σ
−1
2 )g(σ2). (3.8)

Compare Definition 17 with the more familiar definition of convolution
of two functions φ1,φ2 : R → R, defined as: φ1 ∗ φ2(t) =

∫∞
−∞φ1(t−

τ)φ2(τ). Note that this definition of convolution on groups is strictly a
generalization of convolution of functions on the real line, and is a non-
commutative operation for non-Abelian groups. Thus the distribution f ∗ g
is not necessarily the same as g ∗ f.

Using Definition 17, we see that the prediction/rollup step can be rewrit-
ten as:

h(σ(t+1)) =
∑
σ(t)

h(σ(t+1)|σ(t)) · h(σ(t)),

=
∑

{(σ(t),π(t)) :σ(t+1)=π(t)·σ(t)}

q(t)(π(t)) · h(σ(t)),

1 In the context of identity management, we place π on the left side of the multiplication
because we want it to permute tracks and not identities. Had we defined π to map from
tracks to identities (instead of identities to tracks), then π would be multiplied from the
right. Besides left versus right multiplication, there are no differences between the two
conventions.
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(Right-multiplying both sides of

σ(t+1) = π(t)σ(t) by (σ(t))−1, we see that

π(t) can be replaced by σ(t+1)(σ(t))−1),

=
∑
σ(t)

q(t)(σ(t+1) · (σ(t))−1) · h(σ(t)),

=
[
q(t) ∗ h

]
(σ(t+1)).

the shift operation for distributions . Just as in linear algebra,
where it is often more convenient to work with respect to a particular basis
set, it is often more convenient to work with a particular labeling of the
input or output set in many permutation applications. Consider a random
permutation σ1 with distribution h, representing a 1-1 mapping from an
input set Xin = {1, . . . ,n} to an output set Xout = {1, . . . ,n} (here we abuse
notation by using the word ‘permutation’ to refer to a mapping that is not
strictly from a set to itself). We would like to know (1) what σ1 should be if
the reference ordering of the input and output spaces, Xin and Xout, were
relabeled, and (2), how to modify the distribution h accordingly.

Suppose now that the input and output spaces, Xin and Xout, are respec-
tively relabeled as πin : Xin → Xin and πout : Xout → Xout. Rewriting σ1
with respect to the new labeling is the same as changing the basis for a
linear operator:

σ2 = πoutσ1π
−1
in . (3.9)

If Xin = Xout and their labelings are the same (i.e., πin = πout), then we
have σ2 = πinσ1π−1in . Equation 3.9 can be understood if we try to see where
σ2 maps an item in Xin, labeled as i with respect to the relabeled set. With
respect to the original labeling of Xin, item i becomes π−1in (i), which is then
mapped under σ1 with respect to the original labelings of Xin and Xout
to σ1(π−1in (i)). Finally, with respect to the relabeling of Xout, this result is
πout(σ1(π

−1
in (i))). Notationally, we will write: σ2 = Shift[σ1,πin,πout].

Example 18. As an example, let σ1 = [2 1 3] and let πin = [2 3 1], πout = [3 2 1].
A diagram is shown in Figure 9. In (a), we show σ1 represented according to the
original labeling. In (b), we show the same permutation where we’ve relabeled Xin
using πin and Xout using πout. Writing (b) in one-line notation, we see that
σ2(1) = 1, σ2(2) = 2, and σ2(3) = 3, and hence that σ2 should be [1 2 3]. We
can also try computing σ2 using Equation 3.9. Note that σ−1in = [3 1 2]. Then:

σ2 = πout · σ1 · π−1in = [3 2 1] · [2 1 3] · [3 1 2] = [1 2 3],

which matches the computation from above..

Having now defined shifting for permutations, we would like to de-
fine a corresponding shift for a distribution over permutations. If σ1 is
distributed according to a distribution h(σ1) we would like to have a
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1   2 3   

1   2 3   

Xin

Xout
(a) Original labels, σ1 = [2 1 3]

πin(1) πin(2) πin(3)Xin

Xout πout(1) πout(2) πout(3)

(b) New labels, σ2 = [1 2 3]

Figure 9: Diagram for Example 18

function h ′ = Shift[h,πin,πout] which, with respect to the relabeled in-
put and output spaces, is equal to f in the original space. Thus, we want
h ′(πout · σ1 · π−1in ) = h(σ1). Rewriting, we have the following shift operation
for distributions over permutations:

Shift:

h ′(σ) = Shift[h,πin,πout] = h(π−1out · σ · πin). (3.10)

restrict/embed operations. Finally, it is sometimes necessary in
certain applications to increase the size of the underlying item set. For
example, in a multitarget tracking problem with n identities, a new person
may walk into the building, requiring us to extend our current distribution
over Sn to a distribution over Sn+1.

In the simplest case, where we are given the distribution h (defined over
Sn) and know the identity-to-track association of this new (n+ 1)th person,
the distribution after adding the new person is defined on Sn+1 and we
will denote it as Embed[h]:

Embed:

Embed[h](σ) =

{
h(σ) if σ(n+ 1) = n+ 1

0 otherwise
, for all σ ∈ Sn+1.

(3.11)

Similarly, we have a corresponding Restrict functional which takes a
function or distribution defined over Sn+1 and returns a function on Sn:

Restrict:

Restrict[h](σ) = h([σ(1)σ(2) . . . σ(n) n+ 1︸ ︷︷ ︸
fixed

]), for allσ ∈ Sn.

(3.12)

We will use the notation Restrict
k[h] and Embed

k[h ′] to denote iterated
operations. For example, Restrict

2[h] is the same as Restrict[Restrict[h]]

and returns the following function on Sn−2:

h ′(σ ′) = h([σ ′(1), . . . ,σ ′(n− 2),n− 1,n︸ ︷︷ ︸
fixed

]).
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To summarize, we have introduced a number of useful operations that
occur frequently in probabilistic reasoning scenarios. All of the following
are computationally intractable for all by very small n:

Convolution: O((n!)2) Shift: O(n ·n!)

Conditioning: O(n!) Embed: O((n+ 1)!)

Normalization: O(n!) Restrict: O(n!)

Maximization: O(n!)

In later chapters, however, we will show that when a distribution over
permutations can be decomposed additively or multiplicatively, there often
exist efficient exact or approximate inference routines.

3.3 compact summary statistics of distributions

Since there are n! permutations, it is infeasible for all but very small n to
consider storing full distributions over Sn, much less to even consider the
probabilistic inference operations mentioned in the previous section.

In this section, we consider a few ideas for compactly summarizing
distributions over permutations. These compact summaries are useful
for visualizing and communicating the main features of a probability
distribution using broad strokes. Perhaps surprisingly however, some of
our deceptively simple summary statistics will go on to form the basis for
the powerful machinery of Fourier analysis which we will leverage in later
chapters.

mode. In the following, we assume that a distribution h(σ) (which
could simply be an empirical histogram) is provided. While continuous
distributions like Gaussians are typically summarized using moments
(like mean and variance), or more generally, expected features, it is not
immediately obvious how one might, for example, compute the ‘mean’ of a
distribution over permutations. The simplest statistic that one might report
instead, is the mode, the permutation with the highest probability:

Mode : arg max
σ∈Sn

h(σ).

consensus ranking . Another common statistic to report, particularly
among ranking applications, is what is known as the consensus ranking [97],
the ranking which minimizes the expected distance to a ranking drawn
from h. More precisely, let dK : Sn × Sn → R be the Kendall’s tau distance
metric (see Section 2.3.2), The consensus ranking is defined as:

Consensus ranking : arg min
σ∈Sn

∑
π∈Sn

dK(π,σ)h(π).

first-order summaries. Yet another common summary that we
might use as a replacement for the ‘mean’ is to think of the permutations
as permutation matrices and to average the matrices.
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Example 19. For example, consider the two permutations ε, (1, 2) ∈ S3 (ε is the
identity and (1, 2) swaps 1 and 2). We can associate the identity permutation ε
with the 3× 3 identity matrix, and similarly, we can associate the permutation
(1, 2) with the matrix:

(1, 2) 7→

 0 1 0

1 0 0

0 0 1

 .

The ‘average’ of ε and (1, 2) is therefore:

1

2

 1 0 0

0 1 0

0 0 1

+
1

2

 0 1 0

1 0 0

0 0 1

 =

 1/2 1/2 0

1/2 1/2 0

0 0 1

 .

As we will later discuss in more detail, computing the ‘mean’ (as de-
scribed above) of a distribution over permutations, h, compactly summa-
rizes h by storing a marginal distribution over each of σ(1),σ(2), . . . ,σ(n),
which requires storing only O(n2) numbers rather than the full O(n!) for
the exact distribution. Thus we can write the first-order summary as:

First-order summary : Hij =
∑

σ :σ(j)=i

h(σ), for all 1 6 i, j 6 n.

As an identity management based example, one possible summary might
look like:

H =


Alice Bob Cathy

Track 1 2/3 1/6 1/6

Track 2 1/3 1/3 1/3

Track 3 0 1/2 1/2

 ,

and says, for example, that

h(Alice is at Track 1) = 2/3, and h(Bob is at Track 3) = 1/2.

Such doubly stochastic “first-order summaries” have been studied in vari-
ous settings [120, 49].

3.4 apa election data

As a more elaborate running example throughout the thesis, we will analyze
the well known APA election dataset that was first used by [29] and has
since been analyzed in a number of ranking studies. The APA dataset is a
collection of 5738 ballots from a 1980 presidential election of the American
Psychological Association where members rank ordered five candidates
from favorite to least favorite. The names of the five candidates that year
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Figure 10: APA (American Psychological Association) election data. (a) vote dis-
tribution: percentage of votes for each of 5! = 120 possible rankings —
the mode of the distribution is σ = (2, 3, 1, 5, 4). (b) Matrix of first order
marginals: the (i, j)th entry reflects the number of voters who ranked
candidate j in the ith rank.

were (1) William Bevan, (2) Ira Iscoe, (3) Charles Kiesler, (4) Max Siegle,
and (5) Logan Wright [92].

Since there are five candidates, there are 5! = 120 possible rankings. In
Figure 10a we plot the proportion of votes that each ranking received. In-
terestingly, instead of concentrating at just a small set of rankings, the vote
distribution in the APA dataset is fairly diffuse with every ranking receiving
some number of votes. The mode of the vote distribution occurs at the rank-
ing σ = (2, 3, 1, 5, 4) = JC. Kiesler, W. Bevan, I. Iscoe, L. Wright, M. SiegleK
with 186 votes.

For interpretability, we also visualize the first-order matrix in which the
(i, j) entry represents the number of voters who assigned rank i to candidate
j.
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 ∑
σ:σ(j)=i

h(σ)


i,j

=



W. Bevan I. Iscoe C. Kiesler M. Siegle L. Wright

Rank 1 1053 775 1609 1172 1129

Rank 2 1519 1077 960 972 1210

Rank 3 1313 1415 793 1089 1128

Rank 4 1002 1416 1050 1164 1106

Rank 5 851 1055 1326 1341 1165


.

Figure 10b also represents the first-order matrix using grayscale levels to
represent numbers of voters. What can be seen is that overall, candidate 3 (C.
Kiesler) received the highest number of votes for rank 1 (and incidentally,
won the election). The vote distribution gives us a story that goes far deeper
than simply telling us who the winner was, however. [29], for example,
noticed that candidate 3 also had a significant “hate” vote — a good number
of voters placed him in the last rank. Throughout this thesis, we will let
this story unfold via a series of examples based on the APA dataset.

3.5 conclusion

In this chapter we have introduced the basics of probabilistic reasoning in
the context of permutations as well as some of the motivating examples
from tracking and elections that we will use throughout the thesis. We
introduced a number of common inference operations such as convolutions,
conditioning, maximization and normalization, as well as several simple
summary statistics for permutation data.

Due to the factorial size of the symmetric group, one must work with
compact probabilistic representations. At the same time, one must de-
sign inference algorithms that can harness the structure of these compact
representations for efficiency. Solving these twin challenges of compact
representation and efficient inference form the central themes of Parts II and
III of this thesis, where we propose novel methodologies for decomposing
large intractable distributions over permutations into collections of smaller,
easier-to-manipulate component functions.
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4
O V E RV I E W O F PA RT I I : A D D I T I V E D E C O M P O S I T I O N S

WE have introduced the symmetric group and the fundamental algo-
rithms associated with manipulating permutations, as well as the

two main problems associated with probabilistic reasoning with permuta-
tions — finding compact representations and efficient inference algorithms. In
Part II of this thesis, we approach these problems of efficient representation
and inference by decomposing probability distributions over permutations
into a weighted sums of simpler Fourier basis functions.

Recall that the ordinary Fourier series decomposition allows one to write
any function h : [0, 1]→ C as a linear combination of trigonometric basis
functions [93]:

h(x) =

∞∑
m=−∞αme

i2πmx,

where αm ∈ C for each m. The squared magnitude of each αm (|αm|2)
measures the “energy” of h contained at frequencym— for example, if h(x)
is purely sinusoidal with one frequency, then only one of the αm is nonzero.
The collection of trigonometric functions ei2πm forms a complete orthogonal
basis for the space of functions on the interval [0, 1]; thus any collection
of αm’s corresponds to some function h and moreover, h is uniquely
determined. Since the collection of frequency responses, {αm}∞m=−∞ can
themselves be thought of as a function in “frequency space”, we call the
mapping between the functions (h 7→ {αm}) the Fourier transform.

Fourier analytic methods are now widely employed in almost all science
and engineering disciplines due in part to the development of efficient
algorithms for computing Fourier transforms such as the FFT [23]. One
of the classical applications of Fourier methods, for example, has been
for “compressing” signals by dropping high frequency terms, typically
resulting in a smoother approximation to the original signal:

h(x) ≈
B∑

m=−B

αme
i2πmx,

in an operation known as bandlimiting.
In Part II, we rely on a generalized notion of the Fourier transform as

well as generalized notions of frequency and bandlimiting that apply to
functions defined over the symmetric group. We show in particular that
by exploiting the Fourier structure of probabilistic reasoning problems,
one can obtain principled and compact approximate representations of a
distribution over permutations. Important questions that we answer in Part
II include:

• What does it mean for a function defined on permutations to be low
or high frequency?

39
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• In what sense does the Fourier transform generalize the ordinary
DFT (discrete Fourier transform)?

• How can probabilistic inference operations be performed using Fourier
coefficients, without working explicitly with the approximate proba-
bility vector?

• What kind of errors can arise during probabilistic inference by using
a bandlimited approximation?

The following is an outline of the main contributions as well as a roadmap
of the chapters ahead in Part II.

• In Chapter 5, we provide a gentle introduction to the theory of group
representations and noncommutative Fourier analyis. While the re-
sults of Chapters 5 and 6 are not novel, and have indeed been studied
by mathematicians for decades [30, 127, 136, 18], noncommutative
Fourier analysis is still fairly new to the machine learning and ar-
tificial intelligence communities, which have just begun to discover
some of its exciting applications [57, 80, 79].

• While Chapter 5 stresses probabilistic connections and intuitions,
Chapter 6 is a is concerned with the implementation of basic combina-
torial algorithms, such as the generalized FFT (Fast Fourier transform),
that are necessary as subroutines for the methods of Part II. Readers
who are more interested in probabilistic modeling and inference can
continue to the next chapter with little loss of continuity.

Together, Chapters 5 and 6 form tutorial chapters which are tar-
geted specifically at the machine learning and artificial intelligence
communities and describe the connections between noncommutative
Fourier analysis and probabilistic inference problems that involve
permutations.

• In Chapter 7, we present a collection of useful probabilistic models
for which we can efficiently compute low-order Fourier coefficients
or even provide a closed-form expression. Viewing these models
as a collection of atoms, we show that they can be combined via
scale/shift/convolution operations to form a more complex and rich
set of models.

• In Chapter 8, we discuss performing probabilistic inference operations
in the Fourier domain. In particular, we present Fourier theoretic algo-
rithms for the probabilistic inference operations which we presented
in Chapter 3, which appear in filtering applications and beyond, such
as prediction/rollup, conditioning with Bayes rule, normalization,
and maximization. Our most important contribution in this chap-
ter is a novel and conceptually simple algorithm, called Kronecker
Conditioning, which performs all Bayesian conditioning operations
completely in the Fourier domain, allowing for a principled tradeoff
between computational complexity and approximation accuracy. Our
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approach generalizes upon previous work in two ways — first, in the
sense that it can address any transition model or likelihood function
that can be represented in the Fourier domain, and second, in the
sense that many of our results hold for arbitrary finite groups.

• Finally, in Chapter 9, we analyze the errors which can be introduced
by bandlimiting a probability distribution and show how they propa-
gate with respect to inference operations. We argue that approximate
conditioning based on bandlimited distributions can sometimes yield
Fourier coefficients which do not correspond to any valid distribution,
even returning negative “probabilities” on occasion. We address pos-
sible negative and inconsistent probabilities by presenting a method
for projecting the result back into the polytope of coefficients which
correspond to nonnegative and consistent marginal probabilities us-
ing a simple quadratic program. We empirically evaluate the accuracy
of approximate inference on simulated data drawn from our model
and further demonstrate the effectiveness of our approach on a real
camera-based multi-person tracking scenario.

The contributions of Part II have also appeared (or will soon appear) in
publication in the following articles:

[1] Jonathan Huang, Carlos Guestrin, and Leonidas Guibas. Efficient infer-
ence for distributions on permutations. In J.C. Platt, D. Koller, Y. Singer,
and S. Roweis, editors, Advances in Neural Information Processing Systems
20, NIPS ’07, pages 697–704. MIT Press, Cambridge, MA, 2008.

[2] Jonathan Huang, Carlos Guestrin, and Leonidas J. Guibas. Fourier
theoretic probabilistic inference over permutations. Journal of Machine
Learning Research (JMLR), 10:997–1070, 2009.

[3] Xiaoye Jiang, Jonathan Huang, and Leonidas Guibas. Fourier-
information duality in the identity management problem. In The Euro-
pean Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases (ECML 2011), ECML ’11, Athens, Greece,
September 2011.
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5
F O U R I E R A N A LY S I S O N T H E S Y M M E T R I C G R O U P

OVER the last fifty years, the Fourier Transform has been ubiquitously
applied to everything digital, particularly with the invention of the

Fast Fourier Transform [23, 113]. On the real line, the Fourier Transform is
a well-studied method for decomposing a function into a sum of sine and
cosine terms over a spectrum of frequencies. Perhaps less familiar to the
machine learning community though, is its group theoretic generalization.
In this section we review group theoretic generalizations of the Fourier
transform with an eye towards approximating functions on Sn. Noncom-
mutative generalizations of the Fourier transform have been studied quite
extensively throughout the last century from both the mathematics [83]
and physics communities [18]. Applications to permutations were first
pioneered by Persi Diaconis who studied problems in card shuffling and
since then, there have been many papers on related topics in probability
and statistics. For further information, see [29] and [127].

5.1 group representation theory

The generalized definition of the Fourier Transform relies on the theory
of group representations,1 which formalize the concept of associating
permutations with matrices and are used to construct a complete basis for
the space of functions on a group G, thus also playing a role analogous to
that of sinusoids on the real line.

Definition 20 (Group Representation). A representation of a group G is a
map ρ from G to a set of invertible dρ × dρ (complex) matrix operators
(ρ : G→ Cdρ×dρ) which preserves algebraic structure in the sense that for
all σ1,σ2 ∈ G, we have:

ρ(σ1σ2) = ρ(σ1) · ρ(σ2).

The matrices which lie in the image of ρ are called the representation matrices,
and we will refer to dρ as the degree of the representation.

1 The term ‘group representation’, which is standard throughout all of modern algebraic
literature, should not be confused with our problem of efficient ‘representation’ in which we
design tractable methods for storing the parameters or summary statistics of a probability
distribution.

43
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44 fourier analysis on the symmetric group

The requirement that ρ(σ1σ2) = ρ(σ1) · ρ(σ2) is analogous to the prop-
erty that ei(θ1+θ2) = eiθ1 · eiθ2 for the conventional sinusoidal basis. Each
matrix entry, ρij(σ) defines some function over Sn:

ρ(σ) =


ρ11(σ) ρ12(σ) · · · ρ1dρ(σ)

ρ21(σ) ρ22(σ) · · · ρ2dρ(σ)
...

...
. . .

...

ρdρ1(σ) ρdρ2(σ) · · · ρdρdρ(σ)

 , (5.1)

and consequently, each representation ρ simultaneously defines a set of d2ρ
functions over Sn. We will eventually think of group representations as the
set of Fourier basis functions onto which we can project arbitrary functions.

Before moving onto examples, we make several remarks about the gener-
ality of these chapters. First, while this thesis is primarily focused on the
symmetric group, many of the results from Part II hold for arbitrary finite
groups. For example, there are a variety of finite groups that have been
studied in applications, like metacyclic and dihedral groups [136], wreath
product groups [37], etc. However, while some of these results will even
extend with minimal effort to more general cases, such as locally compact
groups, the assumption in all of the following results will be that the group
G is finite, even if it is not explicity stated. Secondly, given an arbitrary
finite group G, some of the algebraic results that we use require that the
underlying field be the complex numbers. For the particular case of the
symmetric group, however, we can in fact assume that the representations
are real-valued matrices. Thus, throughout the thesis, we will explicitly
assume that the representations are real-valued.2

Example 21. We begin by showing three examples of representations on the
symmetric group.

1. The simplest example of a representation is called the trivial representation
ρ(n) : Sn → R1×1, which maps each element of the symmetric group to 1,
the multiplicative identity on the real numbers. The trivial representation
is actually defined for every group, and while it may seem unworthy of
mention, it plays the role of the constant basis function in the Fourier theory.

2. The first-order permutation representation of Sn, which we alluded to in
Example 19, is the degree n representation, τ(n−1,1) (we explain the termi-
nology in Section 5.2) , which maps a permutation σ to its corresponding
permutation matrix given by [τ(n−1,1)(σ)]ij = 1 {σ(j) = i}. For example,
the first-order permutation representation on S3 is given by:

2 To recover similar results for more complex-valued representations, one would have to
replace matrix transposes by adjoints, etc.
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τ(2,1)(ε) =

 1 0 0

0 1 0

0 0 1

 τ(2,1)(1, 2) =

 0 1 0

1 0 0

0 0 1



τ(2,1)(2, 3) =

 1 0 0

0 0 1

0 1 0

 τ(2,1)(1, 3) =

 0 0 1

0 1 0

1 0 0



τ(2,1)(1, 2, 3) =

 0 0 1

1 0 0

0 1 0

 τ(2,1)(1, 3, 2) =

 0 1 0

0 0 1

1 0 0


3. The alternating representation of Sn, maps a permutation σ to the deter-

minant of τ(n−1,1)(σ), which is +1 if σ can be equivalently written as the
composition of an even number of pairwise swaps, and −1 otherwise. We
write the alternating representation as ρ(1,...,1) with n 1’s in the subscript.
For example, on S4, we have:

ρ(1,1,1,1)((1, 2, 3)) = ρ(1,1,1,1)((13)(12)) = +1.

The alternating representation, as we shall discuss further, can be interpreted
as the ‘highest frequency’ basis function on the symmetric group, intuitively
due to its high sensitivity to swaps. For example, if τ(1,...,1)(σ) = 1, then
τ(1,...,1)((12)σ) = −1. In identity management, it may be reasonable to
believe that the joint probability over all n identity labels should only change
by a little if just two objects are mislabeled due to swapping — in this case,
ignoring the basis function corresponding to the alternating representation
should still provide an accurate approximation to the joint distribution.

In general, a representation corresponds to an overcomplete set of func-
tions and therefore does not constitute a valid basis for any subspace of
functions. For example, the set of nine functions on S3 corresponding to
τ(2,1) span only four dimensions, because there are six normalization con-
straints (three on the row sums and three on the column sums), of which
five are independent — and so there are five redundant dimensions. To
find a valid complete basis for the space of functions on Sn, we will need
to find a family of representations whose basis functions are independent,
and span the entire n!-dimensional space of functions.

In the following two definitions, we will provide two methods for con-
structing a new representation from old ones such that the set of functions
on Sn corresponding to the new representation is linearly dependent on the
old representations. Somewhat surprisingly, it can be shown that depen-
dencies which arise amongst the representations can always be recognized
in a certain sense, to come from the two possible following sources [117].

Definition 22.
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1. Equivalence. Given a representation ρ1 and an invertible matrix C,
one can define a new representation ρ2 by “changing the basis” for
ρ1:

ρ2(σ) , C
−1 · ρ1(σ) ·C. (5.2)

We say, in this case, that ρ1 and ρ2 are equivalent as representations
(written ρ1 ≡ ρ2, as opposed to ρ1 = ρ2), and the matrix C is known
as the intertwining operator. Note that dρ1 = dρ2 .

It can be checked that the functions corresponding to ρ2 can be
reconstructed from those corresponding to ρ1. For example, if C is a
permutation matrix, the matrix entries of ρ2 are exactly the same as
the matrix entries of ρ1, only permuted.

2. Direct Sum. Given two representations ρ1 and ρ2, we can always form
a new representation, which we will write as ρ1 ⊕ ρ2, by defining:

ρ1 ⊕ ρ2(σ) ,

[
ρ1(σ) 0

0 ρ2(σ)

]
. (5.3)

ρ1 ⊕ ρ2 is called the direct sum representation. For example, the direct
sum of two copies of the trivial representation is:

ρ(n) ⊕ ρ(n)(σ) =

[
1 0

0 1

]
,

with four corresponding functions on Sn, each of which is clearly
dependent upon the trivial representation itself.

Most representations can be seen as being equivalent to a direct sum
of strictly smaller representations. Whenever a representation ρ can be
decomposed as ρ ≡ ρ1 ⊕ ρ2, we say that ρ is reducible. As an example, we
now show that the first-order permutation representation is a reducible
representation.

Example 23. Instead of using the standard basis vectors {e1, e2, e3}, the first-
order permutation representation for S3, τ(2,1) : S3 → C3×3, can be equivalently
written with respect to a new basis {v1, v2, v3}, where:

v1 =
e1 + e2 + e3
|e1 + e2 + e3|

,

v2 =
−e1 + e2
|− e1 + e2|

,

v3 =
−e1 − e2 + 2e3
|− e1 − e2 + 2e3|

.

To ‘change the basis’, we write the new basis vectors as columns in a matrix C:

C =

 | | |

v1 v2 v3

| | |

 =


1√
3

−
√
2
2 − 1√

6
1√
3

√
2
2 − 1√

6
1√
3

0 2√
6

 ,
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P1

P3

P2

ρ(2,1)(1,2)

ρ(2,1)(1,2,3)

Figure 11: The action of the permutations (1, 2) and (1, 2, 3) on the equilateral
triangle with vertices P1, P2, and P3 via the representation ρ2,1. The
transposition (1, 2) reflects the triangle onto itself across the y-axis
and the 3-cycle (1, 2, 3) rotates the triangle by a π/3 counter-clockwise
rotation onto itself (this figure is best viewed in color)

and conjugate the representation τ(2,1) by C (as in Equation 5.2) to obtain the
equivalent representation C−1 · τ(2,1)(σ) ·C:

C−1 · τ(2,1)(ε) ·C =

 1 0 0

0 1 0

0 0 1

 ,

C−1 · τ(2,1)(1, 2) ·C =

 1 0 0

0 −1 0

0 0 1

 ,

C−1 · τ(2,1)(2, 3) ·C =

 1 0 0

0 1/2
√
3/2

0
√
3/2 −1/2

 ,

C−1 · τ(2,1)(1, 3) ·C =

 1 0 0

0 1/2 −
√
3/2

0 −
√
3/2 −1/2

 ,

C−1 · τ(2,1)(1, 2, 3) ·C =

 1 0 0

0 −1/2 −
√
3/2

0
√
3/2 −1/2

 ,

C−1 · τ(2,1)(1, 3, 2) ·C =

 1 0 0

0 −1/2
√
3/2

0 −
√
3/2 −1/2

 .

The interesting property of this particular basis is that the new representation
matrices all appear to be the direct sum of two smaller representations, a trivial
representation, ρ(3) as the top left block, and a degree 2 representation in the
bottom right which we will refer to as ρ(2,1).
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Geometrically, the representation ρ(2,1) can also be thought of as the group of
rigid symmetries of the equilateral triangle (see Figure 11) with vertices:

P1 =

[ √
3/2

1/2

]
,P2 =

[
−
√
3/2

1/2

]
,P3 =

[
0

−1

]
.

The matrix ρ(2,1)(1, 2) acts on the triangle by reflecting about the y-axis, and
ρ(2,1)(1, 2, 3) by a π/3 counter-clockwise rotation.

In general, there are infinitely many reducible representations. For ex-
ample, given any dimension d, there is a representation which maps every
element of a group G to the d× d identity matrix (the direct sum of d
copies of the trivial representation). However, for any finite group, there
exists a finite collection of atomic representations which can be used to
build up any other representation (up to equivalence) using the direct
sum operation. These representations are referred to as the irreducibles of a
group, and they are defined simply to be the collection of representations
(up to equivalence) which are not reducible. It can be shown that any
(complex) representation of a finite group G is equivalent to a direct sum of
irreducibles [29], and hence, for any representation τ, there exists a matrix
C for which

C−1 · τ ·C =
⊕
ρ

zρ⊕
j=1

ρ, (5.4)

where ρ ranges over all distinct irreducible representations of the group
G, and the inner ⊕ refers to some finite number (zρ) of copies of each
irreducible ρ.

As it happens, there are only three irreducible representations of S3 [29],
up to equivalence: the trivial representation ρ(3), the degree 2 representa-
tion ρ(2,1), and the alternating representation ρ(1,1,1). The complete set of
irreducible representation matrices of S3 are shown in Table 2. Unfortu-
nately, the analysis of the irreducible representations for n > 3 is far more
complicated and we postpone this more general discussion for Section 5.2.

5.1.1 The Fourier transform

The link between group representation theory and Fourier analysis is given
by the celebrated Peter-Weyl theorem ([29, 127, 114]) which says that the
matrix entries of the irreducibles of G form a complete set of orthogonal
basis functions on G.3 The space of functions on S3, for example, is or-
thogonally spanned by the 3! functions ρ(3)(σ), [ρ(2,1)(σ)]1,1, [ρ(2,1)(σ)]1,2,

3 Technically the Peter-Weyl result, as stated here, is only true if all of the representation
matrices are unitary. That is, ρ(σ)∗ρ(σ) = I for all σ ∈ Sn, where the matrix A∗ is the
conjugate transpose of A. For the case of real-valued (as opposed to complex-valued)
matrices, however, the definitions of unitary and orthogonal matrices coincide.
While most representations are not unitary, there is a standard result from representation
theory which shows that for any representation of G, there exists an equivalent unitary
representation.

[ August 4, 2011 at 11:32 ]



5.1 group representation theory 49

σ ρ(3) ρ(2,1) ρ(1,1,1)

ε 1

[
1 0

0 1

]
1

(1, 2) 1

[
−1 0

0 1

]
−1

(2, 3) 1

[
1/2

√
3/2

√
3/2 −1/2

]
−1

(1, 3) 1

[
1/2 −

√
3/2

−
√
3/2 −1/2

]
−1

(1, 2, 3) 1

[
−1/2 −

√
3/2

√
3/2 −1/2

]
1

(1, 3, 2) 1

[
−1/2

√
3/2

−
√
3/2 −1/2

]
1

Table 2: The irreducible representation matrices of S3.

[ρ(2,1)(σ)]2,1, [ρ(2,1)(σ)]2,2 and ρ(1,1,1)(σ), where [ρ(σ)]ij denotes the (i, j)
entry of the matrix ρ(σ).

As a replacement for projecting a function h onto a complete set of
sinusoidal basis functions (as one would do on the real line), the Peter-Weyl
theorem suggests instead to project onto the basis provided by the irre-
ducibles of G. As on the real line, this projection can be done by computing
the inner product of h with each element of the basis, and we define this
operation to be the generalized form of the Fourier Transform.

Definition 24. Let h : G → R be any function on a group G and let ρ be
any representation on G. The Fourier Transform of h at the representation ρ
is defined to be the matrix of coefficients:

ĥρ =
∑
σ

h(σ)ρ(σ). (5.5)

The collection of Fourier Transforms at all irreducible representations of G
form the Fourier Transform of h.

There are two important points which distinguish this Fourier Transform
from its familiar formulation on the real line — first, the outputs of the
transform are matrix-valued, and second, the inputs to ĥ are representations
of G rather than real numbers. As in the familiar formulation, the Fourier
Transform is invertible and the inversion formula is explicitly given by the
Fourier Inversion Theorem.

Theorem 25 (Fourier Inversion Theorem).

h(σ) =
1

|G|

∑
λ

dρλTr
[
ĥTρλ · ρλ(σ)

]
, (5.6)

where λ indexes over the collection of irreducibles of G.
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Note that the trace term in the inverse Fourier Transform is just the ‘ma-
trix dot product’ between ĥρλ and ρλ(σ), since Tr

[
AT ·B

]
= 〈vec(A), vec(B)〉,

where by vec we mean mapping a matrix to a vector on the same elements
arranged in column-major order.

We now provide several examples for intuition. For functions on the real
line, the Fourier Transform at zero frequency gives the DC component of
a signal. The same holds true for functions on a group; If h : G → R is
any function, then since ρ(n) = 1, the Fourier Transform of h at the trivial
representation is constant, with ĥρ(n) =

∑
σ h(σ). Thus, for any probability

distribution, we have ĥρ(n) = 1. If U is the uniform distribution, then
Ûρ = 0 at every irreducible ρ except at the trivial representation.

The Fourier Transform at τ(n−1,1) also has a simple interpretation:

[ĥτ(n−1,1) ]ij =
∑
σ∈Sn

h(σ)[τ(n−1,1)(σ)]ij,

=
∑
σ∈Sn

h(σ)1 {σ(j) = i} ,

=
∑

σ:σ(j)=i

h(σ).

If h is a probability distribution, then ĥτ(n−1,1) is a matrix of first-order
marginal probabilities, where the (i, j)-th element is the marginal probabil-
ity that a random permutation drawn from h maps element j to i.

Example 26. Consider the following probability distribution on S3:

σ ε (1, 2) (2, 3) (1, 3) (1, 2, 3) (1, 3, 2)

h(σ) 1/3 1/6 1/3 0 1/6 0

The set of all first order marginal probabilities is given by the Fourier transform
at τ(2,1):

ĥτ(2,1) =


A B C

1 2/3 1/6 1/6

2 1/3 1/3 1/3

3 0 1/2 1/2

 .

In the above matrix, each column j represents a marginal distribution over the
possible tracks that identity j can map to under a random draw from h. We see, for
example, that Alice is at Track 1 with probability 2/3, or at Track 2 with probability
1/3. Simultaneously, each row i represents a marginal distribution over the possible
identities that could have been mapped to track i under a random draw from h.
In our example, Bob and Cathy are equally likely to be in Track 3, but Alice is
definitely not in Track 3. Since each row and each column is itself a distribution,
the matrix ĥτ(2,1) must be doubly stochastic. We will elaborate on the consequences
of this observation later.
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The Fourier transform of the same distribution at all irreducibles is:

ĥρ(3) = 1, ĥρ(2,1) =

[
1/4

√
3/4

√
3/4 1/4

]
, ĥρ(1,1,1) = 0.

The first-order permutation representation, τ(n−1,1), captures the statis-
tics of how a random permutation acts on a single object irrespective of
where all of the other n− 1 objects are mapped, and in doing so, compactly
summarizes the distribution with only O(n2) numbers. Unfortunately, the
Fourier transform at the first-order permutation representation cannot
capture more complicated statements like:

P(Alice and Bob occupy Tracks 1 and 2) = 0.

To avoid collapsing away so much information, we might define richer
summary statistics that might capture ‘higher-order’ effects. We define the
second-order unordered permutation representation by:

[τ(n−2,2)(σ)]{i,j},{k,`} = 1 {σ({k, `}) = {i, j}} ,

where we index the matrix rows and columns by unordered pairs {i, j}.
The condition inside the indicator function states that the representation
captures whether the pair of objects {k, `} maps to the pair {i, j}, but is
indifferent with respect to the ordering; i.e., either k 7→ i and ` 7→ j, or,
k 7→ j and ` 7→ i.

Example 27. For n = 4, there are six possible unordered pairs: {1, 2}, {1, 3}, {1, 4},
{2, 3}, {2, 4}, and {3, 4}. The matrix representation of the permutation (1, 2, 3) is:

τ(2,2)(1, 2, 3) =



{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2} 0 0 0 1 0 0

{1, 3} 1 0 0 0 0 0

{1, 4} 0 0 0 0 1 0

{2, 3} 0 1 0 0 0 0

{2, 4} 0 0 0 0 0 1

{3, 4} 0 0 1 0 0 0


.

The second order ordered permutation representation, τ(n−2,1,1), is defined
similarly:

[τ(n−2,1,1)(σ)](i,j),(k,`) = 1 {σ((k, `)) = (i, j)} ,

where (k, `) denotes an ordered pair. Therefore, [τ(n−2,1,1)(σ)](i,j),(k,`) is 1 if
and only if σ maps k to i and ` to j.

As in the first-order case, the Fourier transform of a probability distri-
bution at τ(n−2,2), returns a matrix of marginal probabilities of the form:
P(σ : σ({k, `}) = {i, j}), which captures statements like, "Alice and Bob
occupy Tracks 1 and 2 with probability 1/2". Similarly, the Fourier trans-
form at τ(n−2,1,1) returns a matrix of marginal probabilities of the form
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P(σ : σ((k, `)) = (i, j)), which captures statements like, "Alice is in Track 1

and Bob is in Track 2 with probability 9/10".
We can go further and define third-order representations, fourth-order

representations, and so on. In general however, the permutation represen-
tations as they have been defined above are reducible, intuitively due to
the fact that it is possible to recover lower order marginal probabilities
from higher order marginal probabilities. For example, one can recover the
normalization constant (corresponding to the trivial representation) from
the first order matrix of marginals by summing across either the rows or
columns, and the first order marginal probabilities from the second order
marginal probabilities by summing across appropriate matrix entries. To
truly leverage the machinery of Fourier analysis, it is important to under-
stand the Fourier transform at the irreducibles of the symmetric group, and
in the next section, we show how to derive the irreducible representations
of the Symmetric group by first defining permutation representations, then
“subtracting off the lower-order effects”.

5.2 representation theory of the symmetric group

In this section, we provide a brief introduction to the representation theory
of the symmetric group. Rather than giving a fully rigorous treatment of
the subject, our goal is to give some intuition about the kind of information
which can be captured by the irreducible representations of Sn. Roughly
speaking, we will show that Fourier transforms on the symmetric group,
instead of being indexed by frequencies, are indexed by partitions of n
(tuples of numbers which sum to n), and certain partitions correspond to
more complex basis functions than others. For proofs, we point the reader
to consult: [30, 65, 114, 133].

Instead of the singleton or pairwise marginals which were described in
the previous section, we will now focus on using the Fourier coefficients of
a distribution to query a much wider class of marginal probabilities. As
an example, we will be able to compute the following (more complicated)
marginal probability on S6 using Fourier coefficients:

h

σ : σ

 1 2 3
4 5
6


 =

 1 2 6
4 5
3


 , (5.7)

which we interpret as the joint marginal probability that the rows of the
diagram on the left map to corresponding rows on the right as unordered
sets. In other words, Equation 5.7 is the joint probability that unordered set
{1, 2, 3} maps to {1, 2, 6}, the unordered pair {4, 5} maps to {4, 5}, and the
singleton {6} maps to {3}.

The diagrams in Equation 5.7 are known as Ferrer’s diagrams and are com-
monly used to visualize partitions of n, which are defined to be unordered
tuples of positive integers, λ = (λ1, . . . , λ`), which sum to n. For example,
λ = (3, 2) is a partition of n = 5 since 3+ 2 = 5. Usually we write partitions
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as weakly decreasing sequences by convention, so the partitions of n = 5

are:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1),

and their respective Ferrers diagrams are:

, , , , , , .

A Young tabloid is an assignment of the numbers {1, . . . ,n} to the boxes of a
Ferrers diagram for a partition λ, where each row represents an unordered
set. There are 6 Young tabloids corresponding to the partition λ = (2, 2),
for example:

{
1 2
3 4

}
,
{
1 3
2 4

}
,
{
1 4
2 3

}
,
{
2 3
1 4

}
,
{
2 4
1 3

}
,
{
3 4
1 2

}
.

The Young tabloid,
1 2
3 4 , for example, represents the two underordered sets

{1, 2} and {3, 4}, and if we were interested in computing the joint probability
that σ({1, 2}) = {3, 4} and σ({3, 4}) = {1, 2}, then we could write the problem
in terms of Young tabloids as:

h

(
σ : σ

({
1 2
3 4

})
=

{
3 4
1 2

})
.

In general, we will be able to use the Fourier coefficients at irreducible
representations to compute the marginal probabilities of Young tabloids. As
we shall see, with the help of the James Submodule theorem [65], the marginals
corresponding to “simple” partitions will require very few Fourier coeffi-
cients to compute, which is one of the main strengths of working in the
Fourier domain.

Example 28. Imagine three separate rooms containing two tracks each, in which
Alice and Bob are in room 1 occupying Tracks 1 and 2; Cathy and David are in
room 2 occupying Tracks 3 and 4; and Eric and Frank are in room 3 occupying
Tracks 5 and 6, but we are not able to distinguish which person is at which track
in any of the rooms. Then

h

σ :

A B
C D
E F


→

 1 2
3 4
5 6


 = 1.

It is in fact, possible to recast the first-order marginals which were
described in the previous section in the language of Young tabloids by
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noticing that, for example, if 1 maps to 1, then the unordered set {2, . . . ,n}
must map to {2, . . . ,n} since permutations are one-to-one mappings. The
marginal probability that σ(1) = 1, then, is equal to the marginal probability
that σ(1) = 1 and σ({2, . . . ,n}) = {2, . . . ,n}. If n = 6, then the marginal
probability written using Young tabloids is:

h

(
σ : σ

({
2 3 4 5 6
1

})
=

{
2 3 4 5 6
1

})
.

The first-order marginal probabilities correspond, therefore, to the marginal
probabilities of Young tabloids of shape λ = (n− 1, 1).

Likewise, the second-order unordered marginals correspond to Young
tabloids of shape λ = (n−2, 2). If n = 6 again, then the marginal probability
that {1, 2} maps to {2, 4} corresponds to the following marginal probability
for tabloids:

h

(
σ : σ

({
3 4 5 6
1 2

})
=

{
1 3 5 6
2 4

})
.

The second-order ordered marginals are captured at the partition λ =

(n− 2, 1, 1). For example, the marginal probability that {1} maps to {2} and
{2} maps to {4} is given by:

h

σ : σ

 3 4 5 6
1
2


 =

 1 3 5 6
2
4


 .

And finally, we remark that the (1, . . . , 1) partition of n recovers all original
probabilities since it asks for a joint distribution over σ(1), . . . ,σ(n). The
corresponding matrix of marginals has n!×n! entries (though there will
only be n! distinct probabilities.

To see how the marginal probabilities of Young tabloids of shape λ can
be thought of as Fourier coefficients, we will define a representation (which
we call the permutation representation) associated with λ and show that the
Fourier transform of a distribution at a permutation representation gives
marginal probabilities. We begin by fixing an ordering on the set of possible
Young tabloids, {t1}, {t2}, . . . , and define the permutation representation
τλ(σ) to be the matrix:

[τλ(σ)]ij =

{
1 if σ({tj}) = {ti}

0 otherwise
. (5.8)
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It can be checked that the function τλ is indeed a valid representation of
the symmetric group, and therefore we can compute Fourier coefficients at
τλ. If h(σ) is a probability distribution, then[

ĥτλ

]
ij
=
∑
σ∈Sn

h(σ) [τλ(σ)]ij ,

=
∑

{σ :σ({tj})={ti}}

h(σ),

= h(σ : σ({tj}) = {ti}),

and therefore, the matrix of marginals corresponding to Young tabloids of shape
λ is given exactly by the Fourier transform at the representation τλ.

As we showed earlier, the simplest marginals (the zeroth order nor-
malization constant), correspond to the Fourier transform at τ(n), while
the first-order marginals correspond to τ(n−1,1), and the second-order un-
ordered marginals correspond to τ(n−2,2). The list goes on and on, with the
marginals getting more complicated. At the other end of the spectrum, we
have the Fourier coefficients at the representation τ(1,1,...,1) which exactly
recover the original probabilities h(σ).

5.3 interpretations of frequency on the symmetric group

We have introduced partitions as a way of parameterizing different levels
of complexity for marginals in a way that is highly reminiscent of the
different frequency levels for real valued signals. In this section, we discuss
in more detail how one might think about the notion of ‘frequency’ on the
symmetric group.

5.3.1 Dominance ordering and the James Submodule Theorem.

One way to think about frequency for permutations relies on the dominance
ordering of partitions, which, unlike the ordering on frequencies (from low
to high), is not a linear order, but rather, a partial order.

Definition 29 (Dominance Ordering). Let λ,µ be partitions of n. Then λDµ
(we say λ dominates µ), if for each i,

∑i
k=1 λk >

∑i
k=1 µk.

For example, (4, 2)D (3, 2, 1) since 4 > 3, 4+ 2 > 3+ 2, and 4+ 2+ 0 >
3+ 2+ 1. However, (3, 3) and (4, 1, 1) cannot be compared with respect to
the dominance ordering since 3 6 4, but 3+ 3 > 4+ 1. The ordering over
the partitions of n = 6 is depicted in Figure 12a.

Partitions with fat Ferrers diagrams tend to be greater (with respect to
dominance ordering) than those with skinny Ferrers diagrams. Intuitively,
representations corresponding to partitions which are high in the domi-
nance ordering are ‘low frequency’, while representions corresponding to
partitions which are low in the dominance ordering are ‘high frequency’4.

4 The direction of the ordering is slightly counterintuitive given the frequency interpretation,
but is standard in the literature.
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(a) Dominance ordering for
n = 6.

(b) Fourier coefficient matrices for S6.

Figure 12: The dominance order for partitions of n = 6 are shown in the left
diagram (a). Fat Ferrer’s diagrams tend to be higher in the order and
long, skinny diagrams tend to be lower. The corresponding Fourier
coefficient matrices for each partition (at irreducible representations)
are shown in the right diagram (b). Note that since the Fourier basis
functions form a complete basis for the space of functions on the
symmetric group, there must be exactly n! coefficients in total.

Having defined a family of intuitive permutation representations over the
symmetric group, we can now ask whether the permutation representations
are irreducible or not: the answer in general, is to the negative, due to the
fact that it is often possible to reconstruct lower order marginals by sum-
ming over the appropriate higher order marginal probabilities. However, it
is possible to show that, for each permutation representation τλ, there exists
a corresponding irreducible representation ρλ, which, loosely, captures all
of the information at the ‘frequency’ λ which was not already captured at
lower frequency irreducibles. Moreover, it can be shown that there exists
no irreducible representation besides those indexed by the partitions of n.
These remarkable results are formalized in the James Submodule Theorem,
which we state here without proof (see [29, 65, 114]).

Theorem 30 (James’ Submodule Theorem).

[ August 4, 2011 at 11:32 ]



5.3 interpretations of frequency on the symmetric group 57

1. (Uniqueness) For each partition, λ, of n, there exists an irreducible represen-
tation, ρλ, which is unique up to equivalence.

2. (Completeness) Every irreducible representation of Sn corresponds to some
partition of n.

3. There exists a matrix Cλ associated with each partition λ, for which

CTλ · τλ(σ) ·Cλ =
⊕
µDλ

Kλµ⊕
`=1

ρµ(σ), for all σ ∈ Sn. (5.9)

4. Kλλ = 1 for all partitions λ.

In plain English, part (3) of the James Submodule theorem says that
we can always reconstruct marginal probabilities of λ-tabloids using the
Fourier coefficients at irreducibles which lie at λ and above in the dominance
ordering, if we have knowledge of the matrix Cλ (which can be precom-
puted using methods detailed in Appendix B), and the multiplicities Kλµ.
In particular, combining Equation 5.9 with the definition of the Fourier
transform, we have that

ĥτλ = Cλ ·

⊕
µDλ

Kλµ⊕
`=1

ĥρµ

 ·CTλ , (5.10)

and so to obtain marginal probabilities of λ-tabloids, we simply construct a
block diagonal matrix using the appropriate irreducible Fourier coefficients,
and conjugate by Cλ. The multiplicities Kλµ are known as the Kostka
numbers and can be computed using Young’s rule [114]. To illustrate using
a few examples, we have the following decompositions:

τ(n) ≡ ρ(n),
τ(n−1,1) ≡ ρ(n) ⊕ ρ(n−1,1),

τ(n−2,2) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2),

τ(n−2,1,1) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1),

τ(n−3,3) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−3,3),

τ(n−3,2,1) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2)

⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1) ⊕ ρ(n−3,3) ⊕ ρ(n−3,2,1).

Intuitively, the irreducibles at a partition λ reflect the “pure” λth-order
effects of the underlying distribution. In other words, the irreducibles at
λ form a basis for functions that have “interesting” λth-order marginal
probabilities, but uniform marginals at all partitions µ such that µ B λ.

Example 31. As an example, we demonstrate a “preference” function which is
“purely” second-order (unordered) in the sense that its Fourier coefficients are
equal to zero at all irreducible representations except ρ(n−2,2) (and the trivial
representation). Consider the function h : Sn → R defined by:

h(σ) =

{
1 if |σ(1) − σ(2)| ≡ 1 (mod n)

0 otherwise
.
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λ (n) (n− 1, 1) (n− 2, 2) (n− 2, 1, 1) (n− 3, 3) (n− 3, 2, 1)

dim ρλ 1 n− 1
n(n−3)
2

(n−1)(n−2)
2

n(n−1)(n−5)
6

n(n−2)(n−4)
3

Table 3: Dimensions of low-order irreducible representation matrices.

Intuitively, imagine seating n people at a round table with n chairs, but with
the constraint that the first two people, Alice and Bob, are only happy if they are
allowed to sit next to each other. In this case, h can be thought of as the indicator
function for the subset of seating arrangements (permutations) which make Alice
and Bob happy.

Since h depends only on the destination of the unordered pair {1, 2}, its Fourier
transform is zero at all partitions µ such that µ C (n − 2, 2) (ĥµ = 0). On
the other hand, Alice and Bob have no individual preferences for seating, so the
first-order “marginals” of h are uniform, and hence, f̂(n−1,1) = 0. The Fourier
coefficients at irreducibles can be obtained from the second-order (unordered)
“marginals” using Equation 5.9.

CT(n−2,2) · ĥτ(n−2,2) ·C(n−2,2) =



Z

0

ĥρ(n−2,2)


.

5.3.2 The size of an irreducible

The sizes of the irreducible representation matrices are typically much
smaller than their corresponding permutation representation matrices. In
the case of λ = (1, . . . , 1) for example, dim τλ = n! while dim ρλ = 1.
There is a simple combinatorial algorithm, known as the Hook Formula
[114], for computing the dimension of ρλ. While we do not discuss it, we
provide a few dimensionality computations here (Table 3) to facilitate a
dicussion of complexity later. Despite providing polynomial sized function
approximations, the Fourier coefficient matrices can grow quite fast, and
roughly, one would need O(n2k) storage to maintain kth order marginals.
For example, we would need to store O(n8) elements to maintain fourth-
order marginals. It is worth noting that since the Fourier transform is
invertible, there must be n! Fourier coefficients in total, and so

∑
ρ d
2
ρ =

|G| = n!. See Figure 12b for an example of what the matrices of a complete
Fourier transform on S6 would look like.
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5.4 summary

In this chapter we have provided the reader with a brief introduction to
Fourier analysis for the symmetric group. The key point that we empha-
sized is that the problem of compactly representating a distribution can be
approached by maintaining low frequency Fourier terms which correspond,
in a sense, to marginal probabilities over small subsets of items, and can
be represented compactly with polynomial storage space. Though these
Fourier coefficients correspond to marginals at various frequency levels
(ordered with respect to the dominance ordering on partitions), the ac-
tual irreducible coefficients that we store represent the "pure" effects of a
distribution at a certain frequency level.

In practice, since the irreducible representation matrices are determined
only up to equivalence, it is necessary to choose a basis for the irreducible
representations in order to explicitly construct the representation matrices.
In the next chapter, we visit some of these more numerical and compu-
tational issues behind Fourier analysis on the symmetric group, as we
discuss algorithms for working with the Gel’fand-Tsetlin basis which has
several attractive properties, two advantages being that the matrices are
real-valued and orthogonal.
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6
TA B L E A U X C O M B I N AT O R I C S A N D A L G O R I T H M S

IN Chapter 5, we have focused primarily on how to interpret Fourier
coefficients for the symmetric group with an emphasis on probabilistic

connections and intuitions. In this chapter, we turn to more computational
issues and address the following matters:

• We show that the dimensions of the irreducible representation ρλ
can be indexed by a collection of combinatorial objects known as the
standard Young tableaux.

• Using the combinatorics of standard tableaux we provide an intro-
duction to algorithms which efficiently compute explicit irreducible
representation matrices for the symmetric group (i.e., the basis of
functions upon which our additive decomposition methods project).

• Based on our explicit choice for the system of irreducible represen-
tation matrices, we introduce Clausen’s FFT (Fast Fourier transform)
algorithm [19] which is able to compute the Fourier transform of a
function on Sn in faster than the naive O(n!2) running time.

Throughout the chapter, we exploit the decompositions described in Chap-
ter 3 in multiple ways in order to derive efficient algorithms.

6.1 the gel’fand-tsetlin basis

In the previous chapter, we have defined the notion of an irreducible repre-
sentation only up to equivalence, meaning that given explicit representation
matrices {ρλ(σ) : σ ∈ Sn}, the set {C−1 · ρλ(σ) ·C : σ ∈ Sn} (obtained
by changing the basis using any invertible matrix C) could have been
used in its stead. For the purposes of implementation, however, the ques-
tion of which specific basis we should use for expressing the irreducible
representations is an important one.

In this section, we present some standard algorithms for constructing the
irreducible representation matrices with respect to the Gel’fand-Tsetlin (GZ)
basis (constructed with respect to the subgroup chain S1 ⊂ S2 ⊂ · · · ⊂ Sn).1

There are several properties which make the irreducible representation
matrices, written with respect to the GZ basis, fairly useful in practice.
They are guaranteed to be, for example, real-valued and orthogonal. And
as we will show, the matrices have certain useful sparsity properties that
can be exploited in implementation for improved running time complexity.
We note that the techniques in this chapter are standard in the group

1 The irreducible representation matrices in this chapter are also sometimes referred to as
Young’s Orthogonal Representation (YOR).

61
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representation theory literature and we present most of the following
results without proof. For a more elaborate discussion, we refer the reader
to [75, 18, 133].

the branching rule and the gel’fand-tsetlin basis. To de-
scribe the Gel’fand-Tsetlin basis, we introduce a fundamental fact about the
representation theory of the symmetric group known as the branching rule.
It is straightforward to see that any irreducible representation ρλ of Sn, can
also be seen as a representation of Sn−1 when restricted to permutations
in the subgroup Sn−1 ⊂ Sn (recall that in Section 2.4, we defined Sn−1
to be the subset of permutations in Sn which fix n). Despite the fact that
ρλ is irreducible as a representation of Sn, as a representation of Sn−1,
ρλ is not necessarily irreducible and might decompose as a direct sum of
irreducible representations of Sn−1, as Equation 5.4 would dictate. Thus,
for all σ ∈ Sn−1 (i.e., all σ ∈ Sn such that σ(n) = n), there exists Cλ and
multiplicities zλµ such that:

C−1
λ · ρλ(σ) ·Cλ =

⊕
µ

zλµ⊕
j=1

ρµ(σ),

where µ ranges over the partitions of n− 1.
The branching rule (due originally to Peel [107]) allows us to state the

decomposition even more precisely. Given any partition λ of n, let λ− index
over the set of partitions of n− 1 whose Ferrers diagrams differ from λ in a
single box.

Theorem 32 (Branching Rule, see Vershik and Okounkov [133] for a proof).
For each irreducible representation ρλ of Sn, there exists a matrix Cλ such that:

C−1
λ · ρλ(σ) ·Cλ =

⊕
λ−

ρλ−(σ) (6.1)

holds for any σ ∈ Sn−1.

Example 33. If λ = (3, 2), then its corresponding Ferrers diagram is: , and
the Ferrers diagrams corresponding to partitions of 4 which differ from λ in a
single box are:

, and .

Thus, λ− indexes over the set {(2, 2), (3, 1)}. The branching rule states that given
an irreducible matrix representation ρ(3,2) of S5, there is a matrix C(3,2) such
that, for any permutation σ ∈ S5 such that σ(5) = 5,

C−1
(3,2) · ρ(3,2)(σ) ·C(3,2) =

[
ρ(2,2)(σ) 0

0 ρ(3,1)(σ)

]
.

Replacing ρλ with an equivalent irreducible representation always re-
sults in the same decomposition although with a different matrix Cλ. The
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Gel’fand-Tsetlin (GZ) basis for irreducible representations of the symmetric
group is chosen exactly so that this conjugation by C is unneccesary (i.e.,
such that the branching rule holds with all Cλ = I, the dλ× dλ identity ma-
trix). Thus the irreducible representation matrices constructed with respect
to the GZ basis have the property that the equation:

ρλ(σ) =
⊕
λ−

ρλ−(σ) (6.2)

holds identically for all σ ∈ Sn−1 and any partition λ of n. To see why one
can always choose a basis so that Cλ = I, observe that given any irreducible
representation ρλ such that the branching rule holds with Cλ, there exists
an equivalent irreducible representation defined by ρ ′λ = C · ρλ ·C−1 for
which the branching rule must hold with C ′λ = I.

In the next sections, we explore a consequence of the above Gel’fand-
Tsetlin assumption — that the GZ basis elements for each irreducible
representation are in bijection with a collection of combinatorial objects
known as the standard Young tableaux. Using this association allows us to
then state a number of concrete algorithms in terms of standard Young
tableaux.

6.2 recursive applications of the branching rule and branch-
ing sequences

We first show that each GZ basis element for an irreducible representation
ρλ can be associated to a particular sequence of partitions (or Ferrers
diagrams). Together, all “legal” sequences (which we define shortly) can
be used to index the collection of basis vectors for ρλ. More precisely, we
assume in the following that ρλ operates on a vector space spanned by GZ
basis elements {b1, . . . ,bdλ}, and we will associate each bi to a sequence of
n partitions

bi : [µ(1) → µ(2) → . . . µ(n)],

where each µ(k) is a partition of k, and µ(n) = λ. Alternatively, one can
think of each column of the representation ρλ as being associated with a
sequence of partitions.

To establish this association between GZ basis elements and sequences
of partitions, observe that the branching rule (together with Equation 6.2)
allows us to associate each basis element bi with some partition µ(n−1) of
n− 1.

Example 34. By the branching rule, we have that ρ(3,2)(σ) = ρ(2,2)(σ) ⊕
ρ(3,1)(σ) for all σ ∈ S4 ⊂ S5 when using the GZ basis (see also Example 33).
Therefore, when applied to vectors in the subspace spanned by {b1,b2}, the matrix
ρ(3,2)(σ) behaves the same as ρ(2,2)(σ). Similarly, when applied to vectors in
the subspace spanned by {b3,b4,b5}, the matrix ρ(3,2)(σ) behaves the same as
ρ(3,1)(σ).

To b1 and b2, we therefore associate the partition µ(n−1) = (2, 2), and to b3,
b4, and b5, we associate the partition µ(n−1) = (3, 1).

[ August 4, 2011 at 11:32 ]



64 tableaux combinatorics and algorithms

We can then recursively apply the branching rule again (thus restricting
to the subgroup Sn−2 = {σ ∈ Sn : σ(n− 1) = n− 1,σ(n) = n}), to see that
the following decomposition holds:

ρλ(σ) =
⊕
λ−

[⊕
λ−−

ρλ−−(σ)

]
, for any σ ∈ Sn−2 ⊂ Sn,

where λ−− indexes over partitions which differ from λ− by a single box.
Thus each basis element bi can be associated with a partition µ(n) = λ of
n, a partition µ(n−1) of n− 1 and a partition µ(n−2) of n− 2. Taking this
logic even further, we can restrict to Sn−3, Sn−4, and so on until we can
restrict no further, associating each bi with a sequence of partitions µ(1) of
1, µ(2) of 2, . . . , µ(n) of n, where, (1) each partition µ(i) can be obtained by
adding a single box to the Ferrers diagram of µ(i−1), and (2) µ(n) = λ. We
will refer to such a sequence as a branching sequence. Since the branching
rule of Equation 6.1 guarantees multiplicity-free decompositions (that is,
zλµ = 1 for all pairs (λ,µ)), it turns out that each GZ basis element bi is
uniquely specified by a branching sequence.

Example 35. A possible branching sequence is:

→ → → → ,

or written as partitions, [(1)→ (2)→ (2, 1)→ (3, 1)→ (3, 2)].

The set of all possible branching sequences ending in λ can be visualized
using a branching tree (shown for λ = (3, 2) in Figure 13a), where each
branching sequence is a path between the root and some leaf node. We will
denote the branching tree corresponding to the partition λ by Tλ and the
set of nodes at the rth level of Tλ by Tλr (where the root node forms the
zeroth level by convention). We can generalize the branching rule to handle
recursive restrictions by rewriting the same rule in terms of the branching
tree.

Proposition 36. Let ρλ be an irreducible matrix representation of Sn (constructed
with respect to the Gel’fand-Tsetlin basis). For any σ ∈ Sk ⊂ Sn, ρλ(σ) decom-
poses as:

ρλ(σ) =
⊕

µ∈Tλn−k

ρµ(σ).

Example 37. As an example, consider applying Proposition 36 to ρ(3,2) with
k = 3. The (n− k)th (second) level of the branching tree for λ = (3, 2), T(3,2)

2

consists of two copies of the partition (2, 1) and a single copy of the partition (3).
Thus for any element σ ∈ S5 which fixes 4 and 5 (i.e., any σ ∈ S5 such that
σ(4) = 4 and σ(5) = 5), we have:

ρ(3,2)(σ) =

 ρ(2,1)(σ)

ρ(2,1)(σ)

ρ(3)(σ)

 .
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(a) T(3,2) (b) T(3,2)
3

Figure 13: (a) The branching tree for λ = (3, 2). (b) The 3rd level of T(3,2) (outlined)
is denoted by T

(3,2)
3 and consists of two copies of the partition (1, 1)

and three copies of the partition (2).

6.3 indexing basis elements with standard young tableaux

Branching sequences can be compactly encoded by labeling each box of
a Ferrers diagram of λ by the point in the sequence in which that box
is added. For example, labeling boxes as they appear in the branching
sequence [(1)→ (2)→ (2, 1)→ (3, 1)→ (3, 2)] yields:

1 → 1 2 → 1 2
3

→ 1 2 4
3

→ 1 2 4
3 5

.

The entire sequence can therefore be associated with the following Ferrers
diagram with labeled boxes:

1 2 4
3 5

.

Such labeled Ferrers diagrams are called Young tableaux which are like
Young tabloids (see Section 5.2) with the distinction that the rows are
considered as ordered tuples rather than unordered sets. For example, the
following two diagrams are distinct as Young tableaux, but not as Young
tabloids:

1 2 3
4 5

6= 1 3 2
5 4

(as Young tableaux).

While every branching sequence corresponds to some unique Young
tableaux, not every Young tableaux can be constructed from a branching
sequence. Instead, branching sequences are associated only with Young
tableaux whose entries are increasing to the right along rows and down
columns. We call such tableaux standard:
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Definition 38. A Young tableaux is called standard if its labeled entries
increase to the right along rows and down columns.

For example, the set of all standard Young Tableaux of shape λ = (3, 2)
is: {

1 3 5
2 4

, 1 2 5
3 4

, 1 3 4
2 5

, 1 2 4
3 5

, 1 2 3
4 5

}
. (6.3)

The significance of the standard tableaux is that the set of all standard
tableaux of shape λ can be used to index the set of GZ basis vectors for the
irreducible representation ρλ. Since there are five total standard tableaux of
shape (3, 2), we see, for example, that the irreducible corresponding to the
partition (3, 2) is 5-dimensional. There is a simple recursive procedure for
enumerating the set of all standard tableaux of shape λ, which we illustrate
for λ = (3, 2).

Example 39. If λ = (3, 2), there are only two possible boxes that the label 5 can
occupy so that both rows and columns are increasing. They are:

5 , and
5

.

To enumerate the set of all standard tableaux of shape (3, 2), we need to fill the
empty boxes in the above partially filled tableaux with the labels {1, 2, 3, 4} so
that both rows and columns are increasing. Enumerating the standard tableaux
of shape (3, 2) thus reduces to enumerating the set of standard tableaux of shapes
(2, 2) and (3, 1), respectively. For (2, 2), the set of standard tableaux (which, in
implementation would be computed recursively) is:{

1 3
2 4

, 1 2
3 4

}
,

and for (3, 1), the set of standard tableaux is:{
1 3 4
2

, 1 2 4
3

, 1 2 3
4

}
.

The entire set of standard tableaux of shape (3, 2) is therefore:{
1 3 5
2 4

, 1 2 5
3 4

}⋃{ 1 3 4
2 5

, 1 2 4
3 5

, 1 2 3
4 5

}
.

To summarize the main points of this section, we have discussed how the
Gel’fand-Tsetlin (GZ) basis (adapted to the subgroup chain S1 ⊂ · · · ⊂ Sn)
is defined so that the branching rule holds as a matrix identity (with no
need of a change of basis matrix). Furthermore, each basis vector of the
representation space for ρλ can be associated with a branching sequence
of partitions, or equivalently, a standard tableau. And finally, we showed
that using a recursive procedure for enumerating standard tableaux, it is
possible to compute the dimension of any irreducible representation ρλ.
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6.4 constructing irreducible representation matrices

Using the Gel’fand-Tsetlin basis that we have defined, we now present
algorithms for constructing irreducible representation matrices. The first
part of this section describes how to construct the representation matrix ρλ
with respect to the GZ basis when evaluated at an adjacent transposition of
the form σ = (i− 1, i). In the second part of this section, we use the adjacent
transpositions as a generating set (Definition 5) to construct representation
matrices evaluated at arbitrary permutations. We present all results in this
section without proofs, though they can be found in textbooks such as
James and Kerber [65], Chen [18], and Sagan [114].

We will phrase the matrix representation construction algorithm in terms
of the axial distance which we now define. Given a permutation σ ∈ Sn,
one can always apply σ to a Young tableau t to get a new Young tableau,
which we denote by σ ◦ t, by permuting the labels within the tableau. For
example,

(1, 2) ◦ 1 2 3
4 5

= 2 1 3
4 5

.

Note, however, that even if t is a standard tableau, σ ◦ t is not guaranteed
to be standard.

Definition 40. The axial distance, dt(i, j), between entries i and j in tableau
t, is defined to be:

dt(i, j) ≡ (col(t, j) − col(t, i)) − (row(t, j) − row(t, i)),

where row(t, i) denotes the row of label i in tableau t, and col(t, i) denotes
the column of label i in tableau t.

Intuitively, the axial distance between i and j in a standard tableau t is
equal to the (signed) number of steps that are required to travel from i to j,
if at each step, one is allowed to traverse a single box in the tableau in one
of the four cardinal directions. For example, the axial distance from 3 to 4
with respect to tableau: t = 1 2 3

4 5
is:

dt(3, 4) =
(
col
(
1 2 3
4 5

, 4
)
− col

(
1 2 3
4 5

, 3
))

−
(
row

(
1 2 3
4 5

, 4
)
− row

(
1 2 3
4 5

, 3
))

,

= (1− 3) − (2− 1) = −3.

6.4.1 Constructing representation matrices for adjacent transpositions

Given any partition λ of n, and any i such that 2 6 i 6 n, we now show
how to construct the matrix ρλ(i− 1, i). In the following discussion, we
will consider a fixed ordering, t1, . . . , tdλ , on the set of standard tableaux
of shape λ and refer to both standard tableaux and columns of ρλ(σ)
interchangeably. Thus t1 refers to first column, t2 refers to the second
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column and so on. And we will index elements in ρλ(σ) using pairs of
standard tableau, (tj, tk). The rule for constructing the matrix coefficient
[ρλ(i− 1, i)]tj,tk is as follows.

1. Define the (tj, tk) coefficient of ρλ(i− 1, i) to be zero if it is (1), off-
diagonal (j 6= k) and (2), not of the form (tj, (i− 1, i) ◦ tk).

2. If (tj, tk) is a diagonal element, (i.e., of the form (tj, tj)), define:

[ρλ(i− 1, i)]tj,tj = 1/dtj(i− 1, i),

where dtj(i− 1, i) is the axial distance which we defined earlier in
the section.

3. If (tj, tk) can be written as (tj, (i− 1, i) ◦ tj) define:

[ρλ(i− 1, i)]tj,σ◦tj =
√
1− 1/d2tj(i− 1, i).

Note that the only time that off-diagonal elements can be nonzero under
the above rules is when (i− i, i) ◦ tj happens to also be a standard tableau.
If we apply an adjacent transposition, σ = (i− 1, i) to a standard tableau
t, then σ ◦ t is guaranteed to be standard if and only if i− 1 and i were
neither in the same row nor column of t. This can be seen by examining
each case separately.

1. i− 1 and i are in the same row or same column of t. If i and i− 1
are in the same row of t, then i− 1 lies to the left of i. Applying σ ◦ t
swaps their positions so that i lies to the left of i− 1, and so we see
that σ ◦ t cannot be standard. For example,

(3, 4) ◦ 1 2 5
3 4

= 1 2 5
4 3

.

Similarly, we see that if i and i− 1 are in the same column of t, σ ◦ t
cannot be standard. For example,

(3, 4) ◦ 1 3 5
2 4

= 1 4 5
2 3

.

2. i − 1 and i are neither in the same row nor column of t. In the
second case, σ ◦ t can be seen to be a standard tableau due to the fact
that i− 1 and i are adjacent indices. For example,

(3, 4) ◦ 1 2 3
4 5

= 1 2 4
3 5

.

Therefore, to see if (i− 1, i) ◦ t is standard, we need only check to see
that i− 1 and i are in different rows and columns of the tableau t. The
pseudocode for constructing the irreducible representation matrices for
adjacent swaps is summarized in Algorithm 6.1. Note that the matrices
constructed in the algorithm are sparse, with no more than two nonzero
elements in any given column.
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Algorithm 6.1: Pseudocode for computing irreducible representations matrices
with respect to the Gel’fand-Tsetlin basis at adjacent transpositions. Input: i ∈
{2, . . . ,n} and a partition λ. Output: ρλ(i− 1, i).

adjacentrho(i, λ)

ρ← 0dλ×dλ ;
foreach standard tableaux t of shape λ do

d← (col(t, i) − col(t, i− 1)) − (row(t, i) − row(t, i− 1));
ρ(t, t)← 1/d;
if i− 1 and i are in different rows and columns of t then

ρ((i− 1, i) ◦ (t), t)←
√
1− 1/d2;

end
end
return (ρ);

Example 41. We compute the representation matrix of ρ(3,2) evaluated at the
adjacent transposition σ = (i− 1, i) = (3, 4). For this example, we will use the
enumeration of the standard tableaux of shape (3, 2) given in Equation 6.3.

For each (3, 2)-tableau tj, we identify whether σ ◦ tj is standard and compute
the axial distance from 3 to 4 on the tableau tj.

j 1 2 3 4 5

tj

1 3 5
2 4

1 2 5
3 4

1 3 4
2 5

1 2 4
3 5

1 2 3
4 5

(3, 4) ◦ tj
1 4 5
2 3

1 2 5
4 3

1 4 3
2 5

1 2 3
4 5

1 2 4
3 5

(3, 4) ◦ tj Standard? No No No Yes Yes

axial distance (dtj(3, 4)) -1 1 1 3 -3

Putting the results together in a matrix yields:,

ρ(3,2)(3, 4) =



t1 t2 t3 t4 t5

t1 −1

t2 1

t3 1

t4
1
3

√
8
9

t5

√
8
9 −13


,

where all of the empty entries are zero.

6.4.2 Constructing representation matrices for general permutations

To construct representation matrices for general permutations, it is enough
to observe that all permutations can be factored into a sequence of adjacent
swaps (Chapter 2). For example, since the permutation (1, 2, 5) can be
factored into:

(1, 2, 5) = (4, 5)(3, 4)(1, 2)(2, 3)(3, 4)(4, 5),
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Algorithm 6.2: Pseudocode for computing irreducible representation matrices
for arbitrary permutations. Input: any permutation σ ∈ Sn, and partition λ. Output:
the representation matrix ρλ(σ) (with respect to the Gel’fand-Tsetlin basis).

getrho(σ, λ):

ρλ(σ)← Idλ×dλ ;
factors← permtoadjswaps(σ) ;
m← length(factors);
for j = 1, . . . ,m do

(i− 1, i)← factors(j) ;
ρλ(σ)← getadjacentrho (i, λ) · ρλ(σ) ;

end
return (ρ);

we have that for any partition λ,

ρλ(1, 2, 5) = ρλ(4, 5) · ρλ(3, 4) · ρλ(1, 2) · ρλ(2, 3) · ρλ(3, 4) · ρλ(4, 5),

since ρλ is a group representation. The pseudocode in Algorithm 6.2 con-
structs representation matrices for general permutations assuming the
existence of a subroutine for constructing representation matrices for adja-
cent permutations.

6.5 fourier transforming the indicator function of sk ⊂ sn

In addition to facilitating the computation of irreducible representation
matrices, the Gel’fand-Tsetlin basis allows for us to often identify structure
in the Fourier transform in certain functions. In this section, we consider
a particularly useful class of functions — the indicator function of the
subgroup Sk ⊂ Sn, which we study further in Chapter 7 in the context of
building probabilistic models.

We first show how the branching rule allows us to decompose the Fourier
transform of a function that is supported on the subgroup Sn−1 ⊂ Sn.

Corollary 42. If h : Sn → R is supported on the subgroup Sn−1, then for each
partition λ, the Fourier transform of h (with respect to the Gel’fand-Tsetlin basis
adapted S1 ⊂ S2 ⊂ · · · ⊂ Sn) decomposes into a direct sum of Fourier transforms
on Sn−1. Specifically, we have:

ĥρλ =
⊕
λ−

Restrict[ĥρλ− ], (6.4)

where Restrict[ĥ] is the Fourier transform of Restrict[h], the restriction of h
to Sn−1 (see Equation 3.12).

Proof. Equation 6.4 follows as a direct corollary of the Branching rule
(Equation 6.1) and the Definition of the Fourier transform (Definition 24).

Consider the Fourier transform of the indicator function of Sk ⊂ Sn:

δSk(σ) =

{
1 if σ(j) = j for j ∈ {k+ 1, . . . ,n}

0 otherwise
.
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We now apply the branching rule n− k times to the indicator function δSk .
Since δSk is supported on Sk ⊂ Sn, the Fourier transform of δSk at the
irreducible ρλ can be written as a direct sum of Fourier coefficient matrices
at the irreducibles which appear in the n− kth level of the branching tree
corresponding to λ. We thus have:[

δ̂Sk
]
ρλ

=
⊕

µ∈Tλn−k

Restrict
n−k[[δ̂Sk ]ρµ ],

where Restrict
n−k[δ̂Sk ] refers to iterated restrictions to the Fourier trans-

form of the indicator function. Furthermore, since the restriction of δSk to
the subgroup Sk is a constant function, we see that all of the nontrivial
irreducible summands are zero (since the Fourier transform of a constant
function is zero at all nontrivial terms) and that the trivial terms are exactly
k!. Because the trivial representation is one-dimensional, only a subset of
the diagonal elements of

[
δ̂Sk
]
ρλ

can be nonzero.
Algorithmically we can construct the Fourier transform of δSk at λ by

enumerating all of the branching sequences for λ and setting the (j, j) diago-
nal element of

[
δ̂Sk
]
ρλ

to be k! if the corresponding jth branching sequence
contains the partition (k). Alternatively, we can state the procedure in terms
of standard tableaux. First, we define a restriction operation on a standard
tableau t.

Definition 43. Given a standard tableau t with n boxes and a positive inte-
ger k < n, we define the restriction of t to Sk (denoted by Restrict

n−k[t])
to be the standard tableau t after removing boxes containing labels k+ 1,
. . . , n.

To construct the Fourier transform of δSk at λ, we iterate through the
standard tableaux of shape λ, and set the (j, j) diagonal element of

[
δ̂Sk
]
ρλ

to be k! if the restriction of the jth tableau to Sk, Restrict
n−k[tj], takes the

form 1 2 3 · · · k . See Algorithm 6.3.

Example 44. We compute
[
δ̂S2
]
(3,2) as an example. The branching sequences for

λ = (3, 2) are:

1 3 5
2 4

←→ [(1)→ (1, 1)→ (2, 1)→ (2, 2)→ (3, 2)],

1 2 5
3 4

←→ [(1)→ (2)→ (2, 1)→ (2, 2)→ (3, 2)],

1 3 4
2 5

←→ [(1)→ (1, 1)→ (2, 1)→ (3, 1)→ (3, 2)],

1 2 4
3 5

←→ [(1)→ (2)→ (2, 1)→ (3, 1)→ (3, 2)],

1 2 3
4 5

←→ [(1)→ (2)→ (3)→ (3, 1)→ (3, 2)].
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Algorithm 6.3: Pseudocode for computing the Fourier transform of the indicator
function of Sk ⊂ Sn at the partition λ. Input: A partition λ of n, and any 0 < k <=
n. Output: The Fourier transform of the indicator function of Sk ⊂ Sn at the
irreducible representation ρλ.

Sk-indicator(k, λ):[
δ̂Sk

]
ρλ
← 0dλ×dλ ;

foreach standard tableaux t of shape λ do
if Restrict

n−k[t] = 1 2 3 · · · k then[
δ̂Sk

]
ρλ

(t, t)← k!;

end
end

return
([
δ̂Sk

]
ρλ

)
;

Since there are only three sequences which contain the partition (2), only those
three basis elements have nonzero entries. And finally, noting that the appropriate
normalization constant here is simply |S2| = 2! = 2, we see that:

[
δ̂S2
]
(3,2) =



1 3 5
2 4

1 2 5
3 4

1 3 4
2 5

1 2 4
3 5

1 2 3
4 5

1 3 5
2 4

0 0 0 0 0

1 2 5
3 4

0 2 0 0 0

1 3 4
2 5

0 0 0 0 0

1 2 4
3 5

0 0 0 2 0

1 2 3
4 5

0 0 0 0 2


.

We conclude with a comment on sparsity. It is clear from Algorithm 6.3
that the coefficient matrices of

[
δ̂Sk
]
λ

are all diagonal matrices with at most
O(dλ) nonzero entries. In fact, we can sometimes show that a given model
has O(1) nonzero entries.

Consider, for example, the indicator function δSn−1 , which is nonzero
only at the first two partitions, (n), and (n− 1, 1). The zeroth-order term is,[
δ̂Sn−1

]
ρ(n)

= (n−1)!. The first-order Fourier coefficient matrix,
[
δ̂Sn−1

]
ρ(n−1,1)

,
is a matrix of all zeroes except for a single element on the diagonal,[
δ̂Sn−1

]
ρ(n−1,1)

(t, t), where t = 1 2 3 · · ·
n

, which takes on the value (n− 1)!.

6.6 clausen’s fast fourier transform (fft) algorithm

As a final application of the branching rule, we go beyond indicator func-
tions of subgroups in this section and consider computing the Fourier
transform of arbitrary functions on Sn by introducing Clausen’s Fast Fourier
transform algorithm. Given a function h : Sn → R, Clausen’s FFT computes
all Fourier coefficient matrices with respect to the Gel’fand-Tsetlin basis
in O(n3n!) time. While much faster than the naive O((n!)2) algorithm,
Clausen’s FFT is of course too slow to be of practical interest in most cases.

[ August 4, 2011 at 11:32 ]



6.6 clausen’s fast fourier transform (fft) algorithm 73
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Figure 14: An illustration of the relationship between a function h defined on Sn
and functions hi defined over Sn−1 (where n = 4 in this example, and
numbers in the right columns denote function values). Compare this
diagram to Figure 4 in Chapter 2 in which the same decomposition is
used to recursively enumerate permutations.

However, the ideas that underlie the algorithm are identical to some of
the ideas that we use in later chapters to form bandlimited probabilistic
models in the Fourier domain and to factor distributions into independent
distributions.

The FFT algorithm works by decomposing the Fourier transform problem
for a function on Sn into n smaller Fourier transforms defined over Sn−1-
cosets by using Restrict and Embed, operations. In particular, we can write
a function h as a sum of the following functions (indexed by i = 1, . . . ,n)
which are defined over Sn−1.

hi ≡ Restrict

[
Shift[h, ε,π−1i ]

]
, (6.5)

where πi = (i, i+ 1, . . . ,n). While Equation 6.5 may look complicated, each
hi simply corresponds to the collection of permutations for which item
n is constrained to map to i, but shifted to the subgroup Sn−1 ⊂ Sn. For
intuition, see Figure 14, which illustrates that if h is represented as a single
length n! array of numbers, then the hi correspond to contiguous segments
of h with length (n− 1)!. Note that this is the same decomposition that is
used in Chapter 2 for enumerating permutations.
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The function h can therefore be written as a sum of the hi functions
(after applying the inverse shift to each function and embedding it back
into Sn):

h =

n∑
i=1

Shift [Embed[hi], ε,πi] . (6.6)

We show below that given the Fourier coefficients of the hi, one can
formulate a "Fourier domain" counterpart of Equation 6.6 to obtain the
Fourier coefficients of h. The FFT then computes the Fourier transform of
h recursively by first computing the Fourier transforms of the functions hi
on Sn−1, which are then decomposed into sums of functions on Sn−2, and
so on. In the following, we discuss how to perform the shift, restrict and
embed operations with respect to Fourier coefficient matrices.

6.6.1 Embedding and Restriction operations in the Fourier domain

The first two operations, Embed and Restrict, both rely on the branching
rule. The pseudocode for implementing each of the below operations are
given in Algorithms 6.4 and 6.5.

Theorem 45.

1. Given the Fourier transform of a function h : Sn−1 → R, the Fourier
transform of the function Embed[h] : Sn → R is given by:

FourierEmbed:

Embed[ĥλ](σ) =
⊕
λ−

ĥρλ− , (6.7)

where λ− indexes over the partitions of n− 1 which can be obtained
from the Ferrers diagram of λ by removing a single box.

2. Similarly, given the Fourier transform of a function h : Sn → R, the Fourier
transform of the function Restrict[h] : Sn−1 → R is given by:

FourierRestrict:

Restrict[ĥρλ− ] =
∑
λ

dλ
ndλ−

ĥρλ [λ
−], (6.8)

where λ indexes over the partitions of n which can be obtained from
the Ferrers diagram of λ− by adding a single box.

Proof. Equation 6.7 is simply a restatement of Corollary 42 in terms of the
embedding operator (Equation 3.11).

We now establish Equation 6.8. Let h be a function on Sn. To derive the
expression for the restriction of h, we will expand the function Restrict[h]

first using the inverse Fourier transform as defined for functions on Sn,
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Algorithm 6.4: Algorithm for computing the embedding of a function. Input:
{ĥρ}ρ∈Λn−1

, the Fourier coefficient matrices of a function h : Sn−1 → R, Output:
{ĥ ′ρ}ρ∈Λn , the Fourier coefficient matrices of Embed[h] : Sn → R.

FourierEmbed({ĥρ}ρ∈Λn−1
):

foreach partition λ of n do
cnt← 0 ;
Initialize ĥ ′ρλ ← 0dλ×dλ ;
foreach partition λ− obtained by removing a single box from λ do

d← numrows(ĥρλ) ;
ĥ ′ρλ(cnt : (cnt+ d− 1), cnt : (cnt+ d− 1))← ĥρλ− ;
cnt← cnt+ d;

end
end
return ({ĥ ′ρ}ρ∈Λn);

then manipulate the expression to look as if it were the inverse Fourier
transform for a function on Sn−1. Consider any σ ∈ Sn−1 ⊂ Sn.

Restrict[h](σ) = h([σ(1) . . . σ(n− 1)n]),

(Equation 3.12)

=
1

n!

∑
λ

dλTr
[
ĥTρλ · ρλ([σ(1) . . . σ(n− 1)n])

]
,

(Apply inverse Fourier transform, Equation 5.6)

=
1

n!

∑
λ

dλTr

[
ĥTρλ ·

(⊕
λ−

ρλ−(σ)

)]
,

(Branching rule, Equation 6.1)

=
1

n!

∑
λ

dλ
∑
λ−

Tr
[
ĥρλ [λ

−]T · ρλ−(σ)
]

,

(where ĥρλ [λ
−] refers to the block of ĥρλ

corresponding to the λ− term in the branching

rule decomposition)

=
1

(n− 1)!

∑
λ−

Tr

(∑
λ

dλ
ndλ−

ĥρλ [λ
−]

)T
· ρλ−(σ)

 .

(rearranging)

6.6.2 Left cycling in the Fourier domain

We now turn out attention to the problem of shifting a distribution by
left-multiplying by a single contiguous cycle of the form (i, i+ 1, . . . ,n).
Even though this problem falls as a special case of the shifting problem
which we discuss more generally in Chapter 8, we shall refer to this
contiguous cycle case as the CycleLeft operation as alternative (more
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Algorithm 6.5: Algorithm for computing the restriction of a function. Input:
{ĥρ}ρ∈Λn , the Fourier coefficient matrices of a function h : Sn → R, Output:
{ĥ ′ρ}ρ∈Λn−1

, the Fourier coefficient matrices of Restrict[h] : Sn−1 → R.

FourierRestrict({ĥρ}ρ∈Λn ):

foreach partition λ− of n− 1 do
Initialize ĥ ′ρλ− ← 0dλ−×dλ− ;

end
foreach partition λ of n do

cnt← 0 ;
foreach partition λ− obtained by removing a single box from λ do

ĥ ′ρλ− ←
ĥ ′ρλ− + dλ

ndλ−
· ĥρλ(cnt : (cnt+ dλ− − 1), cnt : (cnt+ dλ− + 1));

cnt← cnt+ dλ− ;
end

end
return ({ĥ ′ρ}ρ∈Λn−1

);

efficient) algorithms can be applied. Below, we argue that given the Fourier
coefficient matrices of a distribution h, the Fourier coefficient matrices of
CycleLeft[h, (i, i+ 1, . . . ,n)] can be computed by left multiplying by at
most O(n) representation matrices evaluated at adjacent transpositions.

Proposition 46.
CycleLeft:

CycleLeft[ĥρλ , (i, i+ 1, . . . ,n)] =

n−1∏
j=i

ρλ((j, j+ 1))

 · ĥρλ . (6.9)

Proof.

Shift[ĥρλ , ε, (i, i+ 1, . . . ,n)] =
∑
σ

Shift[h, ε, (i, i+ 1, . . . ,n)](σ)ρλ(σ),

(Definition 24)

=
∑
σ ′

h((i, i+ 1, . . . ,n)−1σ) · ρλ(σ),

(set σ ′ = (i, i+ 1, . . . ,n)σ)

= ρλ((i, i+ 1, . . . ,n)) ·

(∑
σ ′

h(σ ′)ρλ(σ
′)

)
,

(Definition 20)

=

n−1∏
j=i

ρλ((j, j+ 1))

 · ĥρλ ,

where the last line follows by noticing that contiguous cycles factor as a
product of at most O(n) adjacent transpositions:

(i, i+ 1, . . . ,n) = (i, i+ 1)(i+ 1, i+ 2) · · · (n− 1,n).
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Algorithm 6.6: Algorithm for Clausen’s FFT (Fast Fourier transform). Input:
A positive integer n and a function h defined on Sn. h is represented here as an
n! dimensional contiguous array and so the hi correspond to contiguous (n− 1)!
sized subsegments of h. Output: {ĥρ}ρ∈Λn , the Fourier coefficient matrices of h.

FFT(n,h):

if n == 1 then
Initialize ĥρ(n)

← h([1]);

return
(
{ĥρ}ρ∈Λ1

)
;

end
foreach partition λ of n do

Initialize ĥρλ ← 0dλ×dλ ;
end
for i = 1, . . . ,n do

hi ← Restrict[Shift[h, ε,π−1i ]] ;
{[ĥi]ρ∈Λn−1

}← FFT(n− 1,hi);

{[ĥ ′i]ρ∈Λn }← CycleLeft(Embed({[ĥi]ρ∈Λn−1
}), (i, i+ 1, . . . ,n));

foreach partition λ of n do
ĥρλ ← ĥρλ + [ĥ ′i]ρλ ;

end
end
return

(
{ĥρ}ρ∈Λn

)
;

Algorithm 6.7: Algorithm for the inverse FFT. Input: {ĥρ}ρ∈Λ, the Fourier
coefficient matrices of h. Output: A function h defined on Sn.

iFFT(n, {ĥρ}ρ∈Λ):

if n == 1 then
return

(
ĥρ(n)

)
;

end
Initialize h← 0n!×1;
for i = n,n− 1, . . . , 1 do

{[ĥi]ρ}ρ∈Λn−1
← Restrict

[
CycleLeft[{ĥρ}ρ∈Λn , (n,n− 1, . . . , i)]

]
;

hi ← iFFT(n− 1, {[ĥi]ρ}ρ∈Λn−1
);

h((n− i)(n− 1)! : (n− i+ 1)(n− 1)!)← hi;
end
return (h);

Note that cycling operation of Equation 6.9 can be efficiently imple-
mented by exploiting the sparsity of the representation matrices evalu-
ated at adjacent transpositions. In particular, since each column has of
ρλ((j, j + 1)) has no more than two nonzero entries, multiplication by
ρλ((j, j+ 1)) can be accomplished in O(d2λ) operations instead of O(d3λ)
operations.

6.6.3 The Fast Fourier Transform

We finally state the recursive Clausen FFT in Algorithm 6.6, which first
computes the Fourier transforms of each hi, then pieces the Fourier trans-
form of h together via Equation 6.6, which can be performed directly in
the Fourier domain using Algorithm 6.4 and Equation 6.9. The running

[ August 4, 2011 at 11:32 ]



78 tableaux combinatorics and algorithms

time of Clausen’s FFT is known to be O(n3n!) [75]. We note that there are
faster known variants of the FFT algorithm with running time O(n2n!) [94]
which fall outside the scope of this thesis. Algorithm 6.7 provides the
corresponding Clausen iFFT (inverse Fast Fourier transform).

6.7 summary

In this chapter, we have presented a number of algorithms for (1), construct-
ing explicit representation matrices, (2), constructing the Fourier coefficient
matrices of Sk-indicator functions, and (3), computing Fourier and inverse
Fast Fourier transforms of general functions defined over the symmet-
ric group. In each case, the algorithms defined in this chapter are stated
with respect to a combinatorial abstraction known as the standard Young
tableaux which we motivated as arising through recursive applications of
the branching rule. As we will see in the next chapter, directly computing
the Fourier transform using the FFT is, in most cases, intractable and unnec-
essary. However, the same insights that form the basis for the Clausen FFT
will allow us to efficiently construct low-order Fourier coefficient matrices
of useful probabilistic models.
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7
C O M M O N P R O B A B I L I S T I C M O D E L S A N D T H E I R
F O U R I E R T R A N S F O R M S

IF the FFT has a running time complexity O(n3n!), how can anyone hope
to accomplish anything useful in a reasonable amount of time? In this

chapter, we we discuss a collection of useful models for which we can
efficiently compute low-order Fourier coefficients or even provide a closed-
form expression. See Table 4 for a summary of the various models covered
in this section.

We consider both mixing and observation models for various applications.
In multiobject tracking, a mixing model might account for the fact that
two tracks may have swapped identities with some probability. Or in
card shuffling, a mixing model might reflect that a card has been inserted
somewhere into the deck. In multiobject tracking, an observation model
might tell us that Alice is at some track with probability one. Or it might
reflect the fact that some subset of identities occupies some subset of tracks
with no order information, as in the case of the bluetooth model. In ranking
applications, an observation model might, for example, reflect that some
object is ranked higher than, or preferred over some other object. Recall
from Chapter 3 that one convolves a prior distribution by a mixing model
and multiplies (using Bayes rule) a prior distribution by an observation
model.

This chapter is divided into three parts, each describing a different ap-
proach to computing the Fourier coefficients of a model, with some being
simpler or more efficient to implement in certain situations than others. In
direct constructions, we naively apply the definition of the Fourier transform
to obtain the Fourier coefficients of some model. In marginal based con-
structions, we first compute the low-order ‘marginals’ of some probabilistic
model, then project the result onto the irreducible Fourier basis. Finally, in
coset-based constructions, we introduce a family of ‘atomic’ indicator func-
tions of subgroups of the form Sk ⊂ Sn which are then combined using
scale/shift/convolution operations to form more complex models. As we
discuss in Chapter 17, there also remains the open possibility of learning
models directly in the Fourier domain. For the sake of succinctness, many
of the results in this chapter will be stated without proof.

7.1 direct constructions in the fourier domain

In some applications we are fortunate enough to have a model that can
be “directly” transformed efficiently using the definition of the Fourier
transform (Definition 24). We provide two examples.

79
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Mixing Model Example Semantics Relevant Subgroup

Pairwise Identity confusion at tracks 1 and 2 S2

k-subset Identity confusion at tracks in {1, 2, 4, 6} Sk

Insertion Insert top card somewhere in the deck n/a

Observation Model Example Semantics Relevant Subgroup

Single track Alice is at Track 1 Sn−1

Multitrack Alice is at Track 1, Bob is at Track 2, etc. Sn−k

Bluetooth The girls occupy tracks {1, 2, 6, 8} Sk × Sn−k
Pairwise ranking Apples are better than oranges Sn−2

Table 4: Several useful types of mixing and observation models are summarized in
the above table. In many of these cases, computing the appropriate Fourier
transform reduces to computing the Fourier transform of the indicator
function of some related subgroup of Sn, and so we also mention the
relevant subgroup in the second column. In the third column we provide
an example illustrating the semantics of each model.

7.1.1 Pairwise mixing models

The simplest mixing model for identity management assumes that with
probability p, nothing happens, and that with probability (1 − p), the
identities for tracks i and j are swapped. The probability distribution for
the pairwise mixing model is therefore:

qij(π) =


p if π = ε

1− p if π = (i, j)

0 otherwise

. (7.1)

Since qij is such a sparse distribution (in the sense that qij(π) = 0 for most
π), it is possible to directly compute q̂ij using Definition 24:[

q̂ij
]
ρλ

= pI+ (1− p)ρλ((i, j)),

where I refers to the dλ × dλ identity matrix (since any representation
must map the identity element ε to an identity matrix), and ρλ((i, j)) is
the irreducible representation matrix ρλ evaluated at the transposition (i, j)
(which can be computed using the algorithms from the previous chapter.

7.1.2 Insertion mixing models

As another example, we can consider the insertion mixing model (also called
the top-in shuffle [29]) in which we take the top card in some deck of n cards,
and with uniform probability, insert it somewhere in the deck, preserving
all other original relative orderings. Insertions can be useful in ranking
applications where we might wish to add a new item into consideration
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without disturbing the marginal probabilities over relative rankings of
existing items. The distribution for the insertion mixing model is given by:

qinsertion(π) =

{
1
n if π is a cycle of the form (j, j− 1, . . . , 1) for some j ∈ {1, . . . ,n}

0 otherwise
.

(7.2)

Since the insertion mixing model is supported on n permutations, it is
again simple to directly construct the Fourier transform from the definition.
We have:

q̂insertionρλ
=
1

n

n∑
j=1

ρλ(j, j− 1, . . . , 1).

Going beyond the simple case of inserting a single card at a time, in
Chapter 13, we introduce a generalization of the insertion mixing model,
called the biased riffle shuffle, in which one inserts (interleaves) a collection
of cards jointly into a larger deck.

7.2 marginal based constructions

In marginal based constructions, we first compute the low-order ‘marginals’1

of some probabilistic model, then project the result onto the irreducible
Fourier basis. Thus given a function f : Sn → R, we compute, for example,
the first-order marginals f̂τ(n−1,1) , and conjugate by an intertwining operator
(Equation 5.10) to obtain the Fourier coefficients at (n) and (n − 1, 1).
Sometimes when the Fourier transform of f is provably non-zero only at
low-order terms, a marginal based construction might be the easiest method
to obtain Fourier coefficients.

7.2.1 Color histogram observation models

The simplest model assumes that we can get observations of the form:
‘track ` is color k’ (which is essentially the model considered by [80]). The
probability of seeing color k at track ` given data association σ is

L(σ) = h(z` = k|σ) = ασ−1(`),k, (7.3)

where
∑
k ασ−1(`),k = 1. For each identity, the likelihood L(σ) = h(z` = k|σ)

depends, for example, on a histogram over all possible colors. If the number
of possible colors is K, then the likelihood model can be specified by an
n×K matrix of probabilities. For example,

ασ(`),k =


k = Red k = Orange k = Yellow k = Green

σ(Alice) = ` 1/2 1/4 1/4 0

σ(Bob) = ` 1/4 0 0 3/4

σ(Cathy) = ` 0 1/2 1/2 0

 . (7.4)

1 The word ‘marginals’ is technically appropriate only when the function in question is a
legal probability distribution (as opposed to likelihood functions, for example), however
we use it to refer to similar summary statistics for general functions.
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Since the observation model only depends on a single identity, the first-
order terms of the Fourier transform suffice to describe the likelihood
exactly. To compute the first-order Fourier coefficients at irreducibles, we
proceed by computing the first-order Fourier coefficients at the first-order
permutation representation (the first-order “marginals”), then transforming
to irreducible coefficients. The Fourier transform of the likelihood at the
first-order permutation representation is given by:[

L̂τ(n−1,1)

]
ij
=

∑
{σ:σ(j)=i}

h (z` = k|σ)

=
∑

{σ:σ(j)=i}

ασ−1(`),k.

To compute the ij-term, there are two cases to consider.

1. If i = ` (that is, if Track i is the same as the track that was observed),
then the coefficient L̂ij is proportional to the probability that Identity
j is color k.

L̂ij =
∑

{σ:σ(j)=i}

αj,k = (n− 1)! ·αj,k. (7.5)

2. If, on the other hand, i 6= ` (Track i is not the observed track)), then
the coefficient L̂ij is proportional to the sum over

L̂ij =
∑

{σ:σ(j)=i}

ασ−1(`),k, (7.6)

=
∑
m 6=j

∑
{σ:σ(j)=i and σ(m)=`}

ασ−1(`),k, (7.7)

=
∑
m 6=j

(n− 2)! ·αm,k. (7.8)

Example 47. We will compute the first-order marginals of the likelihood function
on S3 which arises from observing a "Red blob at Track 1". Plugging the values
from the “Red” column of the α matrix (Equation 7.4) into Equation 7.5 and 7.8
yields the following matrix of first-order coefficients (at the τ(n−1,1) permutation
representation):

[
L̂(n−1,1)

]
ij
=


Track 1 Track 2 Track 3

Alice 1/4 1/2 3/4

Bob 1/4 1/2 3/4

Cathy 1 1/2 0

 .

The corresponding coefficients at the irreducible representations are:

L̂(3) = 1.5, L̂(2,1) =

[
0 0

−
√
3/4 −3/4

]
, L̂(1,1,1) = 0.
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7.2.2 Unordered subset observation models (version 1)

We sometimes receive measurements in the form of unordered lists. For
example, the bluetooth model is the likelihood function that arises if tracks
{1, . . . ,k} are within range of a bluetooth detector and we receive a mea-
surement that identities {1, . . . ,k} are in range. In sports, we might observe
that the first k tracks belong to the red team and that the last n− k tracks
belong to the blue team. And finally, in approval voting, one specifies a
subset of approved candidates rather than, for example, picking a single
favorite.

We consider two options for bluetooth-type situations. In the first op-
tion, we allow for some error-tolerance by setting the likelihood to be
proportional to the number of tracks that are correctly returned in the
measurement:

hbluetooth(z{t1,...,tk} = {i1, . . . , ik}|σ) ∝ |{t1, . . . , tk}∩σ({i1, . . . , ik})|+ c,

(7.9)

where c is a constant term allowing for noisy observations. Our first blue-
tooth model can be expressed using only first order terms (intuitively
because each track makes a linear contribution) and thus ĥbluetoothρλ

is
nonzero only at the first two partitions λ = (n), (n− 1, 1). For simplicity,
we consider the Fourier transform of the function: h(σ) = |σ({1, . . . ,k}) ∩
{1, . . . ,k}|. The first-order ‘marginals’ of h are covered in the following four
cases:

• (j 6 k and i 6 k):

Lij =
∑

σ:σ(j)=i

h(σ) = (k− 1)2(n− 2)! + (n− 1)!

• (j 6 k and i > k):

Lij =
∑

σ:σ(j)=i

h(σ) = k(k− 1)(n− 2)!

• (j > k and i 6 k):

Lij =
∑

σ:σ(j)=i

h(σ) = k(k− 1)(n− 2)!

• (j > k and i > k):

Lij =
∑

σ:σ(j)=i

h(σ) = k2(n− 2)!

We discuss the second bluetooth-type model after discussing coset based
constructions.
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7.3 coset based constructions

Most of the time, realistic models are not supported on only a handful of
permutations. The approach we take now is to use a collection of ‘primitive’
functions to form more interesting models via scale/shift/convolution
operations. In particular, we will make use of indicator functions of subsets
of the form SX,Y ⊂ Sn, where X = (x1, . . . , xk) and Y = (y1, . . . ,yk) are
ordered k-tuples with {x1, . . . , xk} ⊂ {1, . . . ,n}, {y1, . . . ,yk} ⊂ {1, . . . ,n} and
no repetitions are allowed. SX,Y denotes the set of elements in Sn which
are constrained to map each xi to yi:

SX,Y ≡ {σ ∈ Sn : σ(xi) = yi, for each i=1,. . . ,k}. (7.10)

The SX,Y can also be thought of as two-sided cosets associated with sub-
groups of the form Sn−k ⊂ Sn. For example, if X = (1, 2) and Y = (3, 4)
with n = 4, then SX,Y is simply the set of all permutations that map 1 7→ 3

and 2 7→ 4. Thus, SX,Y = {(1, 3)(2, 4), (1, 3, 2, 4)}. Since |X| = |Y| = k, then
|SX,Y | = (n− k)!, and in the special case that X = Y, we have that SX,Y is in
fact a subgroup isomorphic to Sn−k.

As we showed in Chapter 6, the Fourier transform of the indicator δSX,Y

takes a particularly simple (and low rank) form and can be efficiently
computed. The method described in Chapter6 is based on the FFT which
was described in the previous chapter and exploits the same structure of
the symmetric group that is used by [80]. It is thus possible to understand
why some observation models afford faster conditioning updates based on
sparsity in Fourier domain.

The functions δSX,Y can be viewed as a set of function primitives for
constructing more complicated models via shift/scale/convolution oper-
ations in the Fourier domain. We now discuss the remaining models in
Table 4 with the assumption that there exists some blackbox function which
constructs the Fourier coefficients of the indicator function of (two-sided)
cosets of the form SX,Y ⊂ Sn (see Algorithm 6.3 in Chap 6).

7.3.1 k-subset mixing models

In identity management, it is not always appropriate to mix only two people
at once (as in Equation 7.1) and so we would like to formulate a mixing
model which occurs over a subset of tracks, X = {t1, . . . , tk} ⊂ {1, . . . ,n}.
One way to ‘mimic’ the desired effect is to repeatedly draw pairs (i, j)
from {t1, . . . , tk} and to convolve against the pairwise mixing models qij. A
better alternative is to directly construct the Fourier coefficient matrices for
the k-subset mixing model, in which we allow the tracks in X to be randomly
permuted with uniform probability. In the following, X̄ denotes some fixed
ordering of the complement of X. For example, if n = 5, with X = {1, 2, 4},
then X̄ is either (3, 5) or (5, 3). The k-subset mixing model is defined as:

qX(π) =

{
1
k! if π ∈ SX̄,X̄ ⊂ Sn
0 otherwise

. (7.11)
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Note that SX̄,X̄ is isomorphic to Sk and that the pairwise mixing model is
the special case where k = 2. Intuitively, Equation 7.11 fixes all of the tracks
outside of X and says that with uniform probability, the set of tracks in X
experience some permutation of their respective identities. Equation 7.11

can also be written as qX(π) = 1
k!δSX̄,X̄

(π), and thus the mixing model is
simply a multiple of the indicator function of SX̄,X̄.

7.3.2 Single/multitrack observation models

In the single track observation model (used in [121, 115, 80], for example), we
acquire an identity measurement zj at track j. In the simplest version of the
model, we write the likelihood function as:

h(zi = j|σ) =

{
p if σ(j) = i
1−p
n−1 otherwise

, (7.12)

where j ranges over all n possible identities. h(zi|σ) can also be written as
a weighted sum of a uniform distribution U, and an indicator function:

h(zi = j|σ) =

(
pn− 1

n− 1

)
δSj,i(σ) +

(
1− p

n− 1

)
U(σ).

Equation 7.12 is useful when we receive measurements directly as sin-
gle identities (“Alice is at Track 1 with such and such probability”). It
is, however, far more common to receive lower level measurements that
depend only upon a single identity, which we formalize with the following
conditional independence assumption:

h(zi|σ) = h(zi|σ(j)). (7.13)

For example, as in Equation 7.4, we might have a color histogram over each
individual (“Alice loves to wear green”) and observe a single color per
timestep. Or we might acquire observations in the form of color histograms
and choose to model a distribution over all possible color histograms. If
for each identity j, h(zi|σ(j) = i) = αj, then we can write the likelihood
function as a weighted linear combination of n indicators,

L(σ) = h(zi|σ) =
∑
j

αjδSj,i(σ), (7.14)

and by the linearity of the Fourier transform, we can obtain the Fourier
coefficients of L:

L̂λ =
∑
j

αj

[
δ̂Sj,i

]
ρλ

. (7.15)

Finally, the single-track observations can be generalized to handle joint
observations of multiple tracks at once with a higher-order model:

h(z(t1,...,tk) = (i1, . . . , ik)|σ) =

 p if σ(i`) = t` for each ` ∈ {1, . . . ,k}
1−p
n!

(n−k)!−1
otherwise

.
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(7.16)

Unsurprisingly, while the Fourier coefficients of Equation 7.12 can be
expressed exactly using first-order terms, the Fourier coefficients of the
multi-track observation model, Equation 7.16, requires kth-order terms. It
is important to note that joint multi-track observations are distinct from
making k independent identity observations at the same timestep — we
can handle the latter case by conditioning using a single-track observation
model k times consecutively. Depending upon the specific sensor setup,
one model may be more natural than the other.

7.3.3 Unordered subset observation models (version 2)

In contrast with the first bluetooth model (Equation 7.9), our second
bluetooth-type model handles a higher-order form of measurement. Like
the single/multi-track observation models, it says that with some proba-
bility we receive the correct unordered list, and with some probability, we
receive some other list drawn uniformly at random:

hbluetooth2(z{t1,...,tk} = {i1, . . . , ik}|σ) =

 p if σ({i1, . . . , ik}) = {t1, . . . , tk}
1−p

(nk)−1
otherwise

.

(7.17)

As with the single/multi-track observation models, the bluetooth model
can be written as a weighted linear combination of a uniform distribution
and the indicator function of an Sk× Sn−k-coset (defined in Equation 12.1).
To compute the Fourier transform of hbluetooth2, it is enough to note that
the indicator function of Sk × Sn−k can be thought of as a convolution of
indicator functions of Sk and Sn−k in a certain sense. More precisely.

Proposition 48. Let X = (1, . . . ,k) and Y = (k+ 1, . . . ,n). Then: δSk×Sn−k =
δSX,X ∗ δSY,Y .

Invoking the convolution theorem (Proposition 51) shows that the Fourier
coefficient matrices of δSk×Sn−k can be constructed by first computing the
Fourier coefficients of SX,X and SY,Y , and pointwise multiplying corre-
sponding coefficient matrices. We have:[

δ̂Sk×Sn−k

]
ρλ

=
[
δ̂SX,X

]
ρλ
·
[
δ̂SY,Y

]
ρλ

, for all partitions λ.

An interesting fact about the bluetooth model is that its Fourier terms
are zero at all partitions with more than two rows.

Proposition 49. Without loss of generality, assume that k 6 n
2 . The Fourier

transform of the bluetooth model, ĥbluetooth2ρλ
is nonzero only at partitions of the

form (n− s, s) where s 6 k.

[ August 4, 2011 at 11:32 ]



7.4 conclusion 87

7.3.4 Pairwise ranking observation models

Finally in the pairwise ranking model, we consider observations of the form
“object j is ranked higher than object i” which can appear in various forms of
voting and preference elicitation (“I like candidate x better than candidate
y”) or webpage/advertisement ranking. Here we think of σ as a mapping
from objects to ranks. Our pairwise ranking model simply assigns higher
probability to observations which agree with the ordering of i and j in σ.

hrank(zk`|σ) =

{
p if σ(k) < σ(`)

1− p otherwise
. (7.18)

When k = n− 1, ` = n and p = 1, we have:

hrank(zk`|σ) =

{
1 if σ(n− 1) < σ(n)

0 otherwise

=
∑
i<j

δS(n−1,n),(i,j)(σ).

Perhaps unsurprisingly, pairwise ranking models can be sufficiently cap-
tured by first-order and second-order (ordered) Fourier coefficients 2.

Proposition 50. The Fourier coefficients of the pairwise ranking model, ĥrankρλ
,

are nonzero only at three partitions: λ = (n), (n− 1, 1), and (n− 2, 1, 1).

7.4 conclusion

In this chapter, we have presented a number of useful probabilistic models
that recur in a variety of applications, from identity management, to card
shuffling, to ranking. In each of the models described in this chapter, we
were able to provide methods for efficiently computing low-order terms
of their respective Fourier transforms. In certain cases, we have even been
able to establish that the Fourier transform of a model is zero beyond a
certain frequency level.

We have found that the methods that we typically use to compute Fourier
transforms generally can be categorized into three methodologies: the
direct construction, the marginal based construction, and the coset based
construction. Each of these methodologies is broadly applicable and we
believe that they can be potentially useful for many more models which
we have not considered in this thesis.

2 Additionally, ĥrankρ(n−1,1)
and ĥrankρ(n−2,1,1)

are known to be rank 1 matrices, a fact which can
potentially be exploited for faster conditioning updates in practice.
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8
P R O B A B I L I S T I C R E A S O N I N G I N T H E F O U R I E R
D O M A I N

WHAT we have shown thus far in the thesis is that there is a principled
method for compactly summarizing distributions over permutations

based on the idea of bandlimiting — saving only the low-frequency terms
of the Fourier transform of a function, which, as we have discussed in Chap-
ter 5, is equivalent to maintaining a set of low-order marginal probabilities.
We now turn to the problem of performing probabilistic inference using
our compact summaries. One of the main advantages of viewing marginals
as Fourier coefficients is that it provides a natural principle for formulating
polynomial time approximate inference algorithms, which is to rewrite all
inference related operations with respect to the Fourier domain, then to
perform the Fourier domain operations ignoring high-order terms.

The idea of bandlimiting a distribution is ultimately moot, however, if it
becomes necessary to transform back to the primal domain each time an
inference operation is called. Naively, the Fourier Transform on Sn scales
as O((n!)2), and even the fastest Fast Fourier Transforms for functions on
Sn are no faster than O(n2 ·n!) (see [94] for example). To resolve this issue,
we present a formulation of inference which operates solely in the Fourier
domain, allowing us to avoid a costly transform. We begin by discussing
exact inference in the Fourier domain, which is no more tractable than the
original problem because there are n! Fourier coefficients, but it will allow
us to discuss the bandlimiting approximation in the next section.

In this chapter, we consider all of the probabilistic inference operations
that were introduced in Chapter 3. We focus in particular on the hidden
Markov model operations of prediction/rollup, and conditioning, which
both have beautiful Fourier domain counterparts. While we have motivated
both of these operations in the familiar context of hidden Markov models,
they are fundamental and appear in many other settings. The assumption
for the rest of this section is that the Fourier transforms of the transition
and observation models are known. We have already discussed methods
for obtaining these models in Chapter 7. The main results of this chapter
(excluding the discussions about complexity) extend naturally to other
finite groups besides Sn.

8.1 normalization in the fourier domain

Perhaps the simplest probabilistic operation which can be implemented
in the Fourier domain is normalization. While an exhaustive algorithm
involves summing and elementwise multiplying by an n!-dimensional
probability vector, one can accomplish the same operation with respect
to Fourier coefficients by noticing that the normalization constant of a

89
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Algorithm 8.1: Algorithm for normalizing a positive function in the Fourier
domain. The input is {ĥρ}ρ∈Λ, the collection of irreducible Fourier coefficient
matrices of h.

FourierNormalize(
{
ĥρ
}
ρ∈Λ):

Z← ĥ(n);
foreach ρ ∈ Λ do

ĥ ′ρ ← 1
Z ĥρ;

end
return {ĥ ′ρ}ρ∈Λ;

function h : Sn → R is simply the 1 × 1 Fourier coefficient matrix of
h at the trivial representation (Z =

∑
σ h(σ) = ĥ(n)). If h ′ = h/Z is the

normalized function, then we have, using linearity of the Fourier transform:

Fourier domain normalization operation:

ĥ ′ρ ←
1

ĥ(n)
ĥρ, for any representation ρ of Sn. (8.1)

Thus to normalize a function using Fourier coefficients, one simply
divides each of the Fourier coefficient matrices of h by the trivial coefficient
ĥ(n) (see the pseudocode for Fourier normalization in Algorithm 8.1).

8.2 prediction/rollup in the fourier domain

As discussed in Chapter 3, we focus our attention on random walk tran-
sition models (see Chapter 9 for a more detailed discussion about the
limitations of the random walk assumption). We showed in particular (Equa-
tion 3.8) that, under the random walk assumption, the prediction/rollup
operation can be written as a convolution of two functions on the symmetric
group.

Just as with Fourier transforms on the real line, the Fourier coefficients of
the convolution of two distributions f and g on groups can be obtained from
the Fourier coefficients of f and g individually, using the convolution theorem
(see also [29]), which guarantees that the Fourier transform of a convolution is
the pointwise product of Fourier transforms:

Proposition 51 (Convolution Theorem). Let f and g be probability distributions
on a group G. Then for any representation ρ,[

f̂ ∗ g
]
ρ
= f̂ρ · ĝρ,

where the operation on the right side is matrix multiplication. Note that ρ is not
necessarily assumed to be irreducible.

Proof.

f̂ρĝρ =

(∑
σ

f(σ)ρ(σ)

)(∑
π

g(π)ρ(π)

)
, (Definition 24)
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Algorithm 8.2: Pseudocode for the Fourier Prediction/Rollup Algorithm. The in-
put is

{
ĥρ
}
ρ∈Λ and {q̂ρ}ρ∈Λ, the Fourier coefficient matrices of h (the distribution

at time t), and q, the mixing distribution, respectively.

FourierPredictionRollup

({
ĥ
(t)
ρ

}
ρ∈Λ

,
{
q̂
(t)
ρ

}
ρ∈Λ

)
:

foreach ρ ∈ Λ do
ĥ
(t+1)
ρ ← q̂

(t)
ρ · ĥ

(t)
ρ ;

end
return {ĥ

(t+1)
ρ }ρ∈Λ;

=
∑
π

∑
σ

f(σπ−1)ρ(σπ−1)g(π)ρ(π),

=
∑
π

∑
σ

f(σπ−1)g(π)ρ(σπ−1)ρ(π), (rearranging)

=
∑
π

∑
σ

f(σπ−1)g(π)ρ(σ), (Definition 20)

=
∑
σ

[f ∗ g(σ)] ρ(σ), (Definition 17)

=
[
f̂ ∗ g

]
ρ

, (Definition 24).

Therefore, in the hidden Markov model setting, assuming that the Fourier
transforms q̂(t)ρ and ĥ(t)ρ are given, the prediction/rollup update rule (for
random walk transition models) is simply:

Fourier domain convolution operation:

ĥ
(t+1)
ρ ← q̂

(t)
ρ · ĥ(t)ρ . (8.2)

See also the pseudocode in Algorithm 8.2. Note that the update only
requires knowledge of ĥ and does not require the distribution h itself.
Furthermore, the update is pointwise in the Fourier domain in the sense
that the coefficients at the representation ρ affect ĥ(t+1)ρ only at ρ. Conse-
quently, prediction/rollup updates in the Fourier domain never increase
the representational complexity. For example, if we maintain third-order
marginals, then a single step of prediction/rollup called at time t returns
the exact third-order marginals at time t+ 1, and nothing more.

Example 52. We run the prediction/rollup routines on the first two time steps of
the example in Figure 7, first in the primal domain, then in the Fourier domain.
At each mixing event, two tracks, i and j, swap identities with some probability.
Using a mixing model given by:

q(π) =


3/4 if π = ε

1/4 if π = (i, j)

0 otherwise

,

we obtain results shown in Tables 5 and 6.
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σ h(0) q(1) h(1) q(2) h(2)

ε 1 3/4 3/4 3/4 9/16

(1, 2) 0 1/4 1/4 0 3/16

(2, 3) 0 0 0 0 0

(1, 3) 0 0 0 1/4 3/16

(1, 2, 3) 0 0 0 0 1/16

(1, 3, 2) 0 0 0 0 0

Table 5: Primal domain prediction/rollup example.

ĥ(0) q̂(1) ĥ(1)

ρ(3) 1 1 1

ρ(2,1)

[
1 0

0 1

] [
1/2 0

0 1

] [
1/2 0

0 1

]
ρ(1,1,1) 1 1/2 1/2

q̂(2) ĥ(2)

ρ(3) 1 1

ρ(2,1)

[
7/8 −

√
3/8

−
√
3/8 5/8

] [
7/16 −

√
3/8

−
√
3/16 5/8

]
ρ(1,1,1) 1/2 1/4

Table 6: Fourier domain prediction/rollup example.

8.2.1 Complexity of Prediction/Rollup

We will discuss complexity in terms of the dimension of the largest main-
tained irreducible Fourier coefficient matrix, which we will denote by dmax
(see Table 3 for irreducible dimensions). If we maintain 2nd order marginals,
for example, then dmax = O(n2), and if we maintain 3rd order marginals,
then dmax = O(n3).

Performing a single prediction/rollup step in the Fourier domain in-
volves performing a single matrix multiplication for each irreducible and
thus requires O(d3max) time using the naive multiplication algorithm.

In certain situations, faster updates can be achieved. For example, in
the pairwise mixing model of Example 52, the Fourier transform of q
distribution takes the form: q̂ρλ = αIdλ +βρλ(i, j), where Idλ is the dλ×dλ
identity matrix (see also Chapter 7). As it turns out, the matrix ρλ(i, j) can
be factored into a product of O(n) sparse matrices each with at most O(dλ)
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Algorithm 8.3: Algorithm for shifting function in the Fourier domain. The input
is
{
ĥρ
}
ρ∈Λ, the collection of Fourier coefficient matrices of h, and the relabelings

of the input and output spaces, given by πin and πout, respectively. See also
Equation 3.10.

FourierShift(
{
ĥρ
}
ρ∈Λ):

foreach ρ ∈ Λ do
ĥ ′ρ ← ρλ(πout) · ĥλ · ρ−1λ (πin);

end
return {ĥ ′ρ}ρ∈Λ;

nonzero entries. To see why, recall from out discussion in Chapter 2 that the
transposition (i, j) factors into a sequence of O(n) adjacent transpostions:

(i, j) = (i, i+ 1)(i+ 1, i+ 2) · · · (j− 1, j)(j− 2, j− 1) · (i+ 1, i+ 2)(i, i+ 1).

If we use the Gel’fand-Tsetlin basis adapted to the subgroup chain S1 ⊂
· · · ⊂ Sn (see Chapter 6), then we also know that the irreducible representa-
tion matrices evaluated at adjacent transpositions are sparse with no more
than O(d2max) nonzero entries. Thus by carefully exploiting sparsity during
the prediction/rollup algorithm, one can achieve an O(nd2max) update,
which is faster than O(d3max) as long as one uses more than first-order
terms.

8.3 shift operations in the fourier domain

The shift operation (Equation 3.10) in the Fourier domain takes on a form
similar to that of convolution (in fact, the operation of shifting can be
viewed as convolution by a delta function). In this section, we present the
Fourier domain version of the shifting operation. Let h be a distribution on
Sn and let h ′ = Shift[h,πin,πout]. Given the Fourier transform of h, the
following proposition answers how we can compute the Fourier transform
of h ′:

Proposition 53. Let λ be any partition of n. Then:

Fourier domain shift operation:

ĥ ′λ = Shift[ĥ,πin,πout]λ = ρλ(πout) · ĥλ · ρ−1λ (πin). (8.3)

(Notationally, we will write: ĥ ′ = Shift[ĥ,πin,πout]).
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Proof.

ĥ ′λ =
∑
σ

h ′(σ)ρλ(σ), (Definition 24)

=
∑
σ

h(π−1outσπin)ρλ(σ), (Equation 3.10)

=
∑
σ ′

h(σ ′)ρλ(πoutσ
′π−1in ), (set σ ′ = π−1outσπin)

= ρλ(πout)

(∑
σ

h(σ)ρλ(σ)

)
ρ−1λ (πin),

(Definition 20, Linearity)

= ρλ(πout) · ĥλ · ρ−1λ (πin), (Definition 24).

See pseudocode for Fourier shifting in Algorithm 8.3. As with the Fourier
domain convolution operation, the Fourier domain shift operation is point-
wise in frequency level and therefore shifts never increase the underlying
representational complexity. As with convolution, if we maintain, say, third-
order marginals of h, then after shifting, we will still have exact third-order
marginals of h ′.

8.4 conditioning in the fourier domain

In contrast with the prediction/rollup operation and shifting, conditioning
can potentially increase the representational complexity. As an example,
from the identity management setting, suppose that we know the following
first-order marginal probabilities:

h(Alice is at Track 1 or Track 2) = .9, and

h(Bob is at Track 1 or Track 2) = .9.

If we then make the following first-order observation:

h(Cathy is at Track 1 or Track 2) = 1,

then it can be inferred that Alice and Bob cannot both occupy Tracks 1 and
2 at the same time, i.e.,

h({Alice,Bob} occupy Tracks {1,2}) = 0,

demonstrating that after conditioning, we are left with knowledge of
second-order (unordered) marginals despite the fact that the prior and
likelihood functions were only known up to first-order. Intuitively, the
example shows that conditioning “smears” information from low-order
Fourier coefficients to high-order coefficients, and that one cannot hope for
a pointwise operation as was afforded by prediction/rollup. We now show
precisely how irreducibles of different complexities “interact” with each
other in the Fourier domain during conditioning.

[ August 4, 2011 at 11:32 ]



8.4 conditioning in the fourier domain 95

An application of Bayes rule (Equation 3.5) to find a posterior distribution
h(σ|z) after observing some evidence z requires two steps: a pointwise
product of likelihood h(z|σ) and prior h(σ), followed by a normalization
step:

h(σ|z) =
1

Z
· h(z|σ) · h(σ).

For notational convenience, we will refer to the likelihood function as
L(z|σ) henceforth. We showed earlier that the normalization constant

Z =
∑
σ L(z|σ) · h(σ) is given by the Fourier transform of ̂L(t)h(t) at the

trivial representation (Equation 8.1) — and therefore the normalization
step of conditioning can be implemented by simply dividing each Fourier

coefficient by the scalar
[

̂L(t)h(t)
]
ρ(n)

.

The pointwise product of two functions f and g, however, is trickier
to formulate in the Fourier domain. For functions on the real line, the
pointwise product of functions can be implemented by convolving the
Fourier coefficients of f̂ and ĝ, and so a natural question is: can we apply a
similar operation for functions over general groups? Our answer to this is
that there is an analogous (but more complicated) notion of convolution
in the Fourier domain of a general finite group. We present a convolution-
based conditioning algorithm which we call Kronecker Conditioning, which,
in contrast to the pointwise nature of the Fourier Domain prediction/rollup
step, and much like convolution, smears the information at an irreducible
ρν to other irreducibles.

8.4.1 Fourier transform of the pointwise product

Our approach to computing the Fourier transform of the pointwise product
in terms of f̂ and ĝ is to manipulate the function f(σ)g(σ) so that it can be
seen as the result of an inverse Fourier transform (Equation 5.6). Hence,
the goal will be to find matrices Rν (as a function of f̂, ĝ) such that for any
σ ∈ G,

f(σ) · g(σ) = 1

|G|

∑
ν

dρνTr
(
RTν · ρν(σ)

)
, (8.4)

after which we will be able to read off the Fourier transform of the pointwise
product as

[
f̂g
]
ρν

= Rν.

For any σ ∈ G, we can write the pointwise product in terms of f̂ and ĝ
using the inverse Fourier transform:

f(σ) · g(σ) =

[
1

|G|

∑
λ

dρλTr
(
f̂Tρλ · ρλ(σ)

)]
·

[
1

|G|

∑
µ

dρµTr
(
ĝTρµ · ρµ(σ)

)]

=

(
1

|G|

)2∑
λ,µ

dρλdρµ

[
Tr
(
f̂Tρλ · ρλ(σ)

)
· Tr
(
ĝTρµ · ρµ(σ)

)]
.

(8.5)
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1. If A and B are square, Tr (A⊗B) = (TrA) · (TrB).

2. (A⊗B) · (C⊗D) = AC⊗BD.

3. Let A be an n× n matrix, and C an invertible n× n matrix.
Then TrA = Tr

(
C−1AC

)
.

4. Let A be an n×n matrix and Bi be matrices of size mi ×mi
where

∑
imi = n. Then Tr (A · (

⊕
i Bi)) =

∑
i Tr (Ai ·Bi),

where Ai is the block of A corresponding to block Bi in the
matrix (

⊕
i Bi) .

Table 7: Matrix Identities used in Proposition 54.

Now we want to manipulate this product of traces in the last line to be
just one trace (as in Equation 8.4), by appealing to some properties of the
Kronecker Product. The Kronecker product of an n×n matrix U = (ui,j) by
an m×m matrix V , is defined to be the nm×nm matrix

U⊗ V =


u1,1V u1,2V . . . u1,nV

u2,1V u2,2V . . . u2,nV
...

...
. . .

...

un,1V un,2V . . . un,nV

 .

We summarize some important matrix properties in Table 7. The connection
to our problem is given by matrix property 1. Applying this to Equation 8.5,
we have:

Tr
(
f̂Tρλ · ρλ(σ)

)
· Tr
(
ĝTρµ · ρµ(σ)

)
= Tr

((
f̂Tρλ · ρλ(σ)

)
⊗
(
ĝTρµ · ρµ(σ)

))
= Tr

((
f̂ρλ ⊗ ĝρµ

)T · (ρλ(σ)⊗ ρµ(σ))) ,

where the last line follows by Property 2. The term on the left, f̂ρλ ⊗ ĝρµ , is
a matrix of coefficients. The term on the right, ρλ(σ)⊗ ρµ(σ), itself happens
to be a representation, called the Kronecker (or Tensor) Product Representation.
In general, the Kronecker product representation is reducible, and so it can
be decomposed into a direct sum of irreducibles. In particular, if ρλ and ρµ
are any two irreducibles of G, there exists a similarity transform Cλµ such
that, for any σ ∈ G,

C−1
λµ · [ρλ ⊗ ρµ] (σ) ·Cλµ =

⊕
ν

zλµν⊕
`=1

ρν(σ). (8.6)

The⊕ symbols here refer to a matrix direct sum as in Equation 5.3, ν indexes
over all irreducible representations of Sn, while ` indexes over a number of
copies of ρν which appear in the decomposition. We index blocks on the
right side of this equation by pairs of indices (ν, `). The number of copies
of each ρν (for the tensor product pair ρλ ⊗ ρµ) is denoted by the integer
zλµν, the collection of which, taken over all triples (λ,µ,ν), are commonly
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referred to as the Clebsch-Gordan series. Note that we allow the zλµν to be
zero, in which case ρν does not contribute to the direct sum. The matrices
Cλµ are known as the Clebsch-Gordan coefficients. The Kronecker Product
Decomposition problem is that of finding the irreducible components of the
Kronecker product representation, and thus to find the Clebsch-Gordan
series/coefficients for each pair of irreducible representations (ρλ, ρµ).

Decomposing the Kronecker product inside Equation 8.6 using the
Clebsch-Gordan series and coefficients yields the desired Fourier transform,
which we summarize in the form of a proposition. In the case that f and
g are defined over an Abelian group, we will show that the following
formulas reduce to the familiar form of convolution.

Proposition 54. Let f̂, ĝ be the Fourier transforms of functions f and g re-
spectively, and for each ordered pair of irreducibles (ρλ, ρµ), define: Aλµ ,
C−1
λµ ·

(
f̂ρλ ⊗ ĝρµ

)
·Cλµ. Then the Fourier tranform of the pointwise product fg

is:

Fourier domain conditioning operation:

[
f̂g
]
ρν

=
1

dρν |G|

∑
λµ

dρλdρµ

zλµν∑
`=1

A
(ν,`)
λµ , (8.7)

where A(ν,`)
λµ is the block of Aλµ corresponding to the (ν, `) block in⊕

ν

⊕zλµν
`=1 ρν from Equation 8.6.

Proof. We use the fact that Cλµ is an orthogonal matrix for all pairs (ρλ, ρµ),
i.e., CTλµ ·Cλµ = I.

f(σ) · g(σ) =

[
1

|G|

∑
λ

dρλTr
(
f̂Tρλ · ρλ(σ)

)]
·

[
1

|G|

∑
µ

dρµTr
(
ĝTρµ · ρµ(σ)

)]
,

=

(
1

|G|

)2∑
λ,µ

dρλdρµ

[
Tr
(
f̂Tρλ · ρµ(σ)

)
· Tr
(
ĝTρµ · ρµ(σ)

)]
,

(by Property 1)

=

(
1

|G|

)2∑
λ,µ

dρλdρµ

[
Tr
((
f̂Tρλ · ρλ(σ)

)
⊗
(
ĝTρµ · ρµ(σ)

))]
,

(by Property 2)

=

(
1

|G|

)2∑
λ,µ

dρλdρµTr
((
f̂ρλ ⊗ ĝρµ

)T · (ρλ(σ)⊗ ρµ(σ))) ,

(by Property 3)

=

(
1

|G|

)2∑
λ,µ

dρλdρµTr
(
CTλµ ·

(
f̂ρλ ⊗ ĝρµ

)T ·Cλµ
·CTλµ · (ρλ(σ)⊗ ρµ(σ)) ·Cλµ

)
,

(by definition of Cλµ and Aλµ)
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=

(
1

|G|

)2∑
λ,µ

dρλdρµTr

(
ATλµ ·

(⊕
ν

zλµν⊕
`=1

ρν(σ)

))
,

(by Property 4)

=
1

|G|2

∑
λµ

dρλdρµ

∑
ν

dρν

zλµν∑
`=1

Tr
((
d−1ρν A

(ν,`)
λµ

)T
ρν(σ)

)
,

(rearranging terms)

=
1

|G|

∑
ν

dρνTr


∑
λµ

zλµν∑
`=1

dρλdρµ
dρν |G|

A
(ν,`)
λµ

T ρν(σ)
 .

Recognizing the last expression as an inverse Fourier transform completes
the proof.

The Clebsch-Gordan series, zλµν, plays an important role in Equation 8.7,
which says that the (ρλ, ρµ) cross-term contributes to the pointwise product
at ρν only when zλµν > 0. In the simplest case, we have that

z(n),µ,ν =

{
1 if µ = ν

0 otherwise
,

which is true since ρ(n)(σ) = 1 for all σ ∈ Sn. As another example, it is
known that:

ρ(n−1,1) ⊗ ρ(n−1,1) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1), (8.8)

or equivalently,

z(n−1,1),(n−1,1),ν =

{
1 if ν is one of (n),(n− 1, 1),(n− 2, 2), or (n− 2, 1, 1)

0 otherwise
.

So if the Fourier transforms of the likelihood and prior are zero past the first
two irreducibles ((n) and (n− 1, 1)), then a single conditioning step results
in a Fourier transform which, in general, carries second-order information
at (n− 2, 2) and (n− 2, 1, 1), but is guaranteed to be zero past the first four
irreducibles (n), (n− 1, 1), (n− 2, 2) and (n− 2, 1, 1).

As far as we know, there are no analytical formulas for finding the en-
tire Clebsch-Gordan series or coefficients, and in practice, acquiring the
coefficients requires considerable precomputation. We emphasize however,
that as fundamental constants related to the irreducibles of the Symmetric
group, they need only be computed once and for all (like the digits of π, for
example) and can be stored in a table for all future reference. For a detailed
discussion of techniques for computing the Clebsch-Gordan series/coef-
ficients, see Appendices B and D. We have made a set of precomputed
coefficients available on our lab website 1, but we will assume through-
out the rest of the thesis that both the series and coefficients have been

1 See http://www.select.cs.cmu.edu/data/index.html
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made available as a lookup table. Algorithm 8.4 provides pseudocode for
Kronecker conditioning.

As a final remark, note that Proposition 54 can be rewritten somewhat
more intuitively by absorbing the scalars and submatrices of the Clebsch-
Gordan coefficients into projection matrices P(ν,`)

λµ .

Proposition 55. Let f̂, ĝ be the Fourier transforms of functions f and g respec-
tively. For each triple of partitions (λ,µ,ν) there exists a positive integer zλ,µ,ν

and projection operators P(ν,`)
λµ for each ` ∈ {1, 2, . . . , zλµν} such that the Fourier

tranform of the pointwise product fg is:

[
f̂g
]
ρν

=
∑
λ,µ

zλµν∑
`=1

(P
(ν,`)
λµ )T ·

(
f̂ρλ ⊗ ĝρµ

)
· P(ν,`)
λµ . (8.9)

When f and g are functions on an Abelian group G, then it is a well
known fact that all irreducible representations are one-dimensional, and
so Equation 8.9 reduces to

[
f̂g
]
ρν

=
∑
λ,µ
(
f̂ρλ · ĝρµ

)
, where all the ten-

sor products have simply become scalar multiplications and the familiar
definition of convolution is recovered.

8.4.2 Complexity of conditioning

The complexity of (bandlimited) conditioning (assuming precomputed
Clebsch-Gordan series/coefficients) depends on the order of the coefficients
maintained for both the prior and the observation model. However, it is
difficult to state a general complexity bound for arbitrary finite groups
due to our limited understanding of the Clebsch-Gordan series. Here we
consider conditioning only on the symmetric group of order n with the
assumption that the number of irreducibles maintained is very small (and
in particular, not allowed to grow with respect to n). Our assumption is
realistic in practice since for moderately large n, it is impractical to consider
maintaining higher than, say, third-order terms. If we denote the dimension
of the largest maintained irreducibles of the prior and likelihood by dpriormax

and dobsmax, respectively, then the complexity of conditioning is dominated
by the step that forms a matrix CT · (A⊗B) ·C, where the matrices A⊗B
and C are each (dpriormax · dobsmax)-dimensional. Note, however, that since we
are only interested in certain blocks of CT · (A⊗B) ·C, the full matrix need
not be computed. In particular, the largest extracted block has size dpriormax ,
and so the complexity of conditioning is O

(
(dobsmax)

2(dpriormax )3
)

using the
naive matrix multiplication algorithm.

As we have discussed in Chapter 7, there exist situations in which the
observation model is fully specified by first-order Fourier terms. In such
cases, dobsmax = O(n) and we can perform conditioning in the Fourier
domain in O(n2 · (dpriormax )3) time. If a model is fully specified by second-
order terms, for example, then the update requires O(n4 · (dpriormax )3) time.

To speed up conditioning, one can often exploit matrix sparsity in two
ways. First, we observe that the Clebsch-Gordan coefficient matrices are
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often sparse (we cannot yet prove this, see Figure 22) and so we can
save a conjectured factor of (dpriormax · dobsmax) in practice. Secondly, for the
coset-based observation models discussed in Chapter 7, we can show that
(under an appropriate relabeling of identities and tracks), the Fourier
coefficient matrices of the observation model are sparse (with O(dobsmax) or
sometimes even O(1) nonzero entries for L̂λ). For the simplest observations
which take the form (“Identity j is at track j”), for example, we can obtain
O((dpriormax )3) running time (without accounting for the conjectured sparsity
of the Clebsch-Gordan coefficients), which matches the time required for
the prediction/rollup update.

We now conclude our section on inference with a fully worked example
of Kronecker conditioning.

Example 56. For this example, refer to Table 2 for the representations of S3. Given
functions f,g : S3 → R, we will compute the Fourier transform of the pointwise
product f · g.

Since there are three irreducibles, there are nine tensor products ρλ ⊗ ρµ to
decompose, six of which are trivial either because they are one-dimensional, or
involve tensoring against the trivial representation. The nontrivial tensor products
to consider are ρ(2,1)⊗ ρ(1,1,1), ρ(1,1,1)⊗ ρ(2,1) and ρ(2,1)⊗ ρ(2,1). The Clebsch-
Gordan series for the nontrivial tensor products are:

z(2,1),(1,1,1),ν z(1,1,1),(2,1),ν z(2,1),(2,1),ν

ν = (3) 0 0 1

ν = (2, 1) 1 1 1

ν = (1, 1, 1) 0 0 1

The Clebsch-Gordan coefficients for the nontrivial tensor products are given by
the following orthogonal matrices:

C(2,1)⊗(1,1,1) =

[
0 1

−1 0

]
, C(1,1,1)⊗(2,1) =

[
0 −1

1 0

]
,

C(2,1)⊗(2,1) =

√
2

2


1 0 −1 0

0 −1 0 1

0 −1 0 −1

1 0 1 0

 .

As in Proposition 54, define:

A(2,1)⊗(1,1,1) = CT(2,1)⊗(1,1,1)
(
f̂(2,1) ⊗ ĝ(1,1,1)

)
C(2,1)⊗(1,1,1), (8.10)

A(1,1,1)⊗(2,1) = CT(1,1,1)⊗(2,1)
(
f̂(1,1,1) ⊗ ĝ(2,1)

)
C(1,1,1)⊗(2,1), (8.11)

A(2,1)⊗(2,1) = CT(2,1)⊗(2,1)
(
f̂(2,1) ⊗ ĝ(2,1)

)
C(2,1)⊗(2,1), (8.12)

Then Proposition 54 gives the following formulas:

f̂ · gρ(3) =
1

3!
·
[
f̂ρ(3) · ĝρ(3) + f̂ρ(1,1,1) · ĝρ(1,1,1) + 4 ·

[
A(2,1)⊗(2,1)

]
1,1

]
,

(8.13)

f̂ · gρ(2,1)
=
1

3!
·
[
f̂ρ(2,1) · ĝρ(3) + f̂ρ(3) · ĝρ(2,1) +A(1,1,1)⊗(2,1)
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+A(2,1)⊗(1,1,1) + 2 ·
[
A(2,1)⊗(2,1)

]
2:3,2:3

]
, (8.14)

f̂ · gρ(1,1,1)
=
1

3!
·
[
f̂ρ(3) · ĝρ(1,1,1) + f̂ρ(1,1,1) · ĝρ(3) + 4 ·

[
A(2,1)⊗(2,1)

]
4,4

]
,

(8.15)

where the notation [A]a:b,c:d denotes the block of entries in A between rows a
and b, and between columns c and d (inclusive).

Using the above formulas, we can continue on Example 52 and compute the last
update step in our identity management problem (Figure 7). At the final time step,
we observe that Bob is at track 1 with 100% certainty. Our likelihood function is
therefore nonzero only for the permutations which map Bob (the second identity)
to the first track:

L(σ) ∝

{
1 if σ = (1, 2) or (1, 3, 2)

0 otherwise
.

The Fourier transform of the likelihood function is:

L̂ρ(3) = 2, L̂ρ(2,1) =

[
−3/2

√
3/2

−
√
3/2 1/2

]
, L̂ρ(1,1,1) = 0. (8.16)

Plugging the Fourier transforms of the prior distribution (ĥ(2) from Table 6) and
likelihood (Equation 8.16) into Equations 8.10, 8.11, 8.12, we have:

A(2,1)⊗(1,1,1) =

[
0 0

0 0

]
, A(1,1,1)⊗(2,1) =

1

8

[
1

√
3

−
√
3 −3

]
,

A(2,1)⊗(2,1) =
1

32


−7 −

√
3 11 5

√
3

−2
√
3 −10 −6

√
3 −14

20 22
√
3 −4 4

√
3

−11
√
3 −23 −

√
3 −13


To invoke Bayes rule in the Fourier domain, we perform a pointwise product using
Equations 8.13, 8.14, 8.15, and normalize by dividing by the trivial coefficient,
which yields the Fourier transform of the posterior distribution as:

[
ĥ(σ|z)

]
ρ(3)

= 1,
[
ĥ(σ|z)

]
ρ(2,1)

=

[
−1 0

0 1

]
,
[
ĥ(σ|z)

]
ρ(1,1,1)

= −1.

(8.17)

Finally, we can see that the result is correct by recognizing that the Fourier
transform of the posterior (Equation 8.17) corresponds exactly to the distribution
which is 1 at σ = (1, 2) and 0 everywhere else. Bob is therefore at Track 1, Alice at
Track 2 and Cathy at Track 3.

σ ε (1, 2) (2, 3) (1, 3) (1, 2, 3) (1, 3, 2)

h(σ) 0 1 0 0 0 0
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102 probabilistic reasoning in the fourier domain

Algorithm 8.4: Pseudocode for the Kronecker Conditioning Algorithm. Inputs
are {L̂ρλ }ρλ∈Λ and {ĥρµ }ρµ∈Λ, the Fourier coefficient matrices of the likelihood
function L and prior distribution h.

FourierKroneckerCondition

(
{L̂ρλ }ρλ∈Λ, {ĥρµ }ρµ∈Λ

)
:

foreach ρν ∈ ΛP do L̂Pρν ← 0 //Initialize Posterior
//Pointwise Product
foreach ρλ ∈ ΛL do

foreach ρµ ∈ ΛP do
z← CGseries(ρλ, ρµ) ;
Cλµ ← CGcoefficients(ρλ, ρµ) ; Aλµ ← CTλµ ·

(
L̂ρλ ⊗ P̂ρµ

)
·Cλµ ;

for ρν ∈ ΛP such that zλµν 6= 0 do
for ` = 1 to zλµν do[

̂L(t)h(t)
]
ρν
←
[

̂L(t)h(t)
]
ρν

+
dρλdρµ
dρνn! A

(ν,`)
λµ ; //A(ν,`)

λµ is

the (ν, `) block of Aλµ
end

end
end

end

return FourierNormalize

({
̂L(t)h(t)ρν

}
ρν∈Λ

)
;

8.5 maximization

In certain situations, one might be more interested in computing a max-
imum a posteriori permutation rather than probabilities. In this section,
we briefly discuss the Fourier domain maximization problem, in which we
compute arg maxσ∈Sn h(σ) given the Fourier coefficients of h. As we have
discussed in Chapter 3, it is intractable to optimize arbitrary functions; it is
interesting however, to ask whether it is any easier to optimize low-order
functions (functions whose Fourier coefficients are zero past kth-order
terms).

For first-order functions, polynomial time optimization is indeed possible.
To see why, consider a first-order function h whose Fourier coefficient
matrices are zero except at the terms λ = (n) and (n− 1, 1). Expanding h
with respect to its Fourier coefficients allows for h to be written as the sum
of a constant function and first-order term:

h(σ) = A+ Tr(BT · τ(n−1,1)(σ)).

Therefore to optimize the function h, one must solve problems of the
following form:

arg max
σ∈Sn

Tr(BT · τ(n−1,1)(σ)) = arg max
σ∈Sn

n∑
i=1

Bσ(i),i. (8.18)

Since Equation 8.18 is simply a linear assignment problem, we see that
h can be optimized exactly in polynomial time using, for example, linear
programming or the Hungarian algorithm [131].

higher-order maximization. It may then seem natural that if we
could optimize first-order functions in polynomial time, then we would be
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able to also efficiently optimize second-order functions in polynomial time,
but as we show in the following, this is not true in general.

Below, we consider a second-order (unordered) function f : Sn → R

which can be written using only Fourier terms corresponding to the first
three partitions, λ = (n), (n− 1, 1), and (n− 2, 2). Thus, any second-order
function f can be written as:

f(σ) = A+ Tr(BT · ρ(n−1,1)(σ)) + Tr(CT · ρ(n−2,2)),

for some matrices A,B,C. We consider the second-order optimization prob-
lem (which we will refer to as SOOP), in which one must find the minimum
of such a function f. In particular, we provide a simple polynomial-time
reduction from the Travelling Salesman problem to SOOP, thus showing
that optimizing second-order functions is NP-hard

Let G = (V ,E) be a complete (undirected) graph on n vertices with a
cost function defined on edges c : E→ R+. The objective of the Travelling
Salesman Problem (TSP) is to find a minimum cost roundtrip path (tour)
that visits every vertex exactly once. We will denote the set of all tours by
Θ. The TSP is known to be NP-hard and cannot even be deterministically
approximated in polynomial time. We prove the following.

Theorem 57. Any TSP instance can be reduced to an instance of SOOP in
polynomial time.

Proof. We define a map φ : Sn → Θ which associates each permutation
σ = [σ1 σ2 . . . σn] ∈ Sn to a tour through G which visits vertex σi at step i:

φ : σ 7→ (σ1 − σ2 − · · ·− σn).

Note that φ is a many-to-one mapping and several permutations can be
associated with the same tour since cyclic permutations of σ result in the
same tour. However, it is important to note that φ is surjective on Θ.

The cost function for any TSP instance can therefore also be written as a
function over permutations, f : Sn → R+:

f(σ) =

n∑
i=1

fi(σ),

where, for each i, fi : Sn → R is defined by fi(σ) = c(σi,σi+1) (except
when i = n, in which case fn(σ) = c(σn,σ1)). The solution to the TSP
instance is given by: φ(arg minσ f(σ)).

To see that f is a second-order function and that its Fourier coefficients
can be computed in polynomial time from the edge costs c, note that each
fi can be written as a sum of O(n2) indicator functions:

fi(σ) =
∑

(u,v)∈E

c(u, v)δσ({i,i+1})={u,v}(σ).

We see that f can be written as a sum of O(n3) second-order indicators,
and is therefore itself a second-order function with nonzero coefficients
computable in polynomial time.
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We have shown that we can solve a TSP instance by finding the Fourier
coefficients of f in polynomial time, calling an oracle to obtain arg minσ f(σ),
then mapping the solution to a tour via φ.

We conclude by remarking that despite the hardness results that we
have discussed in this section, there exist approaches that lack theoreti-
cal guarantees but have been shown to work in practical situations. For
example, see [77, 78] for efficient branch-and-bound approaches to the
optimization problem. In the experimental results that we present in the
next chapter, we simply optimize the first-order terms of the maintained
posterior distributions.

8.6 summary

Fourier theoretic summaries are attractive because they have tuneable
approximation quality, and have intuitive interpretations in terms of low-
order marginals. As we have shown in this chapter, they also allow us
to leverage results and insights from noncommutative Fourier analysis to
formulate inference algorithms.

The main contributions of this chapter include methods for perform-
ing general probabilistic inference operations completely in the Fourier
domain. In particular, we have shown how general probabilistic manipula-
tions such as prediction/rollup, conditioning, shifting, normalization and
maximization can be recast as algorithms operating on Fourier coefficients.
As the primary contribution of this chapter, we developed the Kronecker
conditioning algorithm, which conditions a distribution on evidence using
Bayes rule while using only Fourier coefficients. While prediction/rollup
operations can be written as pointwise products in the Fourier domain, we
showed that conditioning operations can be written, in dual fashion, as
generalized convolutions in the Fourier domain. Our conditioning algo-
rithm is general and handles any observation model which can be written
in the Fourier domain. Due to this generality, we are able to efficiently
compute the Fourier transforms of a wide variety of probabilistic models
(see Chapter 7) which may potentially be useful in different applications.

We conclude by remarking that the mathematical framework developed
in this chapter is quite general. In fact, the prediction/rollup, conditioning,
normalization and shifting formulations hold over any finite group, provid-
ing a principled method for approximate inference for problems with
underlying group structure.
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FOR each of the probabilistic inference algorithms that have been pre-
sented in the previous chapter, it is possible to run a bandlimited

version of the same algorithm simply by ignoring high frequency terms.
For example, one can maintain only up to kth order terms in a multi-target
tracking problem, thus allowing for polynomial time inference. Ignoring
terms comes at a price, however, and in this chapter, we explore the conse-
quences of this bandlimiting approach on approximation accuracy.

We draw several important conclusions in this chapter:

• As we discuss, much like ordinary functions on the real line, smoother
distributions are better approximated by low frequency Fourier basis
functions, and thus Fourier theoretic approaches are well suited to
problems with high uncertainty.

• We show that among the inference operations of convolution, normal-
ization, shifting, and conditioning, conditioning is the only operation
during which errors can be introduced in the bandlimiting approxi-
mation.

• We explore how errors during conditioning can propagate from high
order to low order during inference and propose a method for dealing
with this error, We show in particular that it is typically both faster
and more accurate to condition upon low-order observations (i.e.,
observations which involve only several items or objects at a time).

• Finally, we demonstrate the effectiveness of our approximate inference
approach on a real camera-based multi-people tracking setting.

9.1 error from bandlimiting

We now consider the consequences of performing inference using the
Fourier transform at a reduced set of coefficients. Important issues include
understanding how error can be introduced into the system, and when our
algorithms are expected to perform well as an approximation. Specifically,
we fix a bandlimit λMIN and maintain the Fourier transform of h only at
irreducibles which are at λMIN or above in the dominance ordering:

Λ = {ρλ : λD λMIN}.

For example, when λMIN = (n−2, 1, 1),Λ is the set
{
ρ(n), ρ(n−1,1), ρ(n−2,2) ,

and ρ(n−2,1,1)
}

, which corresponds to maintaining second-order (ordered)
marginal probabilities of the form h(σ((i, j)) = (k, `)). During inference, we
follow the procedure outlined in the previous section but discard the higher

105
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Figure 15: In general, smoother distributions are well approximated by low-order
Fourier projections. In this graph, we show the approximation quality of
the Fourier projections on distributions with different entropies, starting
from sharply peaked delta distributions on the left side of the graph,
which get iteratively smoothed until they becomes the maximum en-
tropy uniform distribution on the right side. On the y-axis, we measure
how much energy is preserved in the bandlimited approximation, which

we define to be |h ′|2

|h|2
, where h ′ is the bandlimited approximation to h.

Each line represents the approximation quality using a fixed number
of Fourier coefficients. At one extreme, we achieve perfect signal recon-
struction by using all Fourier coefficients, and at the other, we perform
poorly on “spiky” distributions, but well on high-entropy distributions,
by storing a single Fourier coefficient.

order terms which can be introduced during the conditioning step. We note
that it is not necessary to maintain the same number of irreducibles for
both prior and likelihood during the conditioning step.

The first question to ask is: when should one expect a bandlimited ap-
proximation to be close to h(σ) as a function? Qualitatively, if a distribution
is relatively smooth, then most of its energy is stored in the low-order
Fourier coefficients. However, in a phenomenon quite reminiscent of the
Heisenberg uncertainty principle from quantum mechanics, it is exactly
when the distribution is sharply concentrated at a small subset of permu-
tations, that the Fourier projection is unable to faithfully approximate the
distribution. We illustrate this uncertainty effect in Figure 15 by plotting the
accuracy of a bandlimited distribution against the entropy of a distribution.

Even though the bandlimited distribution is sometimes a poor approxi-
mation to the true distribution, the marginals maintained by our algorithm
are often sufficiently accurate. And so instead of considering the approx-
imation accuracy of the bandlimited Fourier transform to the true joint
distribution, we consider the accuracy only at the marginals which are
maintained by our method.
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9.2 error from inference

We now analyze the errors incurred during our inference procedures with
respect to the accuracy at maintained marginals. It is immediate that the
Fourier domain prediction/rollup operation is exact due to its pointwise
nature in the Fourier domain. For example, if we have the second order
marginals at time t = 0, then we can find the exact second order marginals
at all t > 0 if we only perform prediction/rollup operations.

convolutions increase uncertainty. In fact, the convolution up-
dates for prediction/rollup typically increase the uncertainty of a distri-
bution, often leading to more accurate approximations by a low order
representation. Shin et al. [121] showed, for example, that the entropy must
increase for a certain kind of random walk on Sn (where π could be either
the identity or the transposition (i, j)), but in fact, we show now that the
result is easily generalized for any random walk mixing model and for any
finite group.

Proposition 58. LetG be a finite group. Suppose h(σ(1), . . . ,σ(T), z(1), . . . , z(T))
factors according to a hidden Markov model, with σ(t) ∈ G for each t, and
σ(t+1) = τσ(t) with τ ∼ q for some mixing distribution q. Then:

H
[
h(t+1)(σ(t+1))

]
> max

{
H
[
q(t)(τ(t))

]
,H
[
h(t)(σ(t))

]}
,

where H [h(σ)] denotes the statistical entropy functional,

H[h(σ)] = −
∑
σ∈G

h(σ) logh(σ).

Proof. We have:

h(t+1)(σ(t+1)) =
[
q(t) ∗ h(t)

]
(σ(t+1))

=
∑
σ(t)

q(σ(t+1) · (σ(t))−1)h(t)(σ(t))

Applying the Jensen Inequality to the entropy function (which is concave)
yields:

H
[
h(t+1)(σ(t+1))

]
>
∑
σ(t)

h(t)(σ(t))H
[
q(t)(σ · (σ(t))−1)

]
,

(Jensen’s inequality)

=
∑
σ(t)

h(t)(σ(t))H
[
q(t)(σ)

]
,

(translation invariance of entropy)

= H
[
q(t)(σ)

]
,

(since
∑
σ(t) h(t)(σ(t)) = 1).
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Figure 16: We start with a deck of cards in sorted order, and perform fifteen
consecutive shuffles according to the rule given in Equation 9.1. The plot
shows the entropy of the distribution over permutations with respect to
the number of shuffles for n = 3, 4, . . . , 8. When H(q)/ log(n!) = 1, the
distribution has become uniform.

The proof that H
[
h(t+1)(σ(t+1))

]
> H

[
h(t)(σ(t))

]
is similar with the ex-

ception that we must rewrite the convolution so that the sum ranges over
τ(t).

h(t+1)(σ(t+1)) =
[
q(t) ∗ h(t)

]
(σ(t+1)),

=
∑
τ(t)

q(t)(τ(t))h(t)((τ(t))−1 · σ(t+1)).

Example 59. This example is based on one from [29]. Consider a deck of cards
numbered {1, . . . ,n}. Choose a random permutation of cards by first picking two
cards independently, and swapping (a card might be swapped with itself), yielding
the following probability distribution over Sn:

q(π) =


1
n if π = ε
2
n2

if π is a transposition

0 otherwise

. (9.1)

Repeating the above process for generating random permutations π gives a
transition model for a hidden Markov model over the symmetric group. We can
also see (Figure 16) that the entropy of the deck increases monotonically with
each shuffle, and that repeated shuffles with q(π) eventually bring the deck to the
uniform distribution.

error from conditioning . Instead, the errors in inference are only
committed by Kronecker conditioning, where they are implicitly introduced
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(a) n = 5 (b) n = 6

Figure 17: We show the dominance ordering for partitions of n = 5 and n = 6

again. By setting λMIN = (3, 1, 1) and (4, 1, 1) respectively, we keep the
irreducibles corresponding to the partitions in the dotted regions. If
we call Kronecker Conditioning with a first-order observation model,
then according to Theorem 60, we can expect to incur some error at the
Fourier coefficients corresponding to (3, 1, 1) and (3, 2) for n = 5, and
(4, 1, 1) and (4, 2) for n = 6 (shown as shaded tableaux), but to be exact
at first-order coefficients.

at coefficients outside of Λ (by effectively setting the coefficients of the prior
and likelihood at irreducibles outside of Λ to be zero), then propagated
inside to the irreducibles of Λ.

In practice, we observe that the errors introduced at the low-order irre-
ducibles during inference are small if the prior and likelihood are suffi-
ciently diffuse, which makes sense since the high-frequency Fourier coeffi-
cients are small in such cases. We can sometimes show that the update is
exact at low order irreducibles if we maintain enough coefficients.

Theorem 60. If λMIN = (n− p, λ2, . . . ), and the Kronecker conditioning algo-
rithm is called with a likelihood function whose Fourier coefficients are nonzero
only at ρµ when µD (n− q,µ2, . . . ), then the approximate Fourier coefficients of
the posterior distribution are exact at the set of irreducibles:

ΛEXACT = {ρλ : λD (n− |p− q|, . . . )}.

Proof. See Appendix B.
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For example, if we call Kronecker conditioning by passing in third-order
terms of the prior and first-order terms of the likelihood, then all first
and second-order (unordered and ordered) marginal probabilities of the
posterior distribution can be reconstructed without error.

9.3 projection to the marginal polytope

Despite the encouraging result of Theorem 60, the fact remains that consecu-
tive conditioning steps can propagate errors to all levels of the bandlimited
Fourier transform, and in many circumstances, result in a Fourier trans-
form whose “marginal probabilities” correspond to no consistent joint
distribution over permutations, and are sometimes negative. To combat this
problem, we present a method for projecting to the space of coefficients
corresponding to consistent joint distributions (which we will refer to as
the marginal polytope) during inference.

We begin by discussing the first-order version of the marginal polytope
projection problem. Given an n×nmatrix,M, of real numbers, how can we
decide whether there exists some probability distribution which has M as
its matrix of first-order marginal probabilities? A necessary and sufficient
condition, as it turns out, is for M to be doubly stochastic. That is, all entries
of M must be nonnegative and all rows and columns of M must sum to
one (the probability that Alice is at some track is 1, and the probability that
some identity is at Track 3 is 1). The double stochasticity condition comes
from the Birkhoff-von Neumann theorem [131] which states that a matrix is
doubly stochastic if and only if it can be written as a convex combination of
permutation matrices.

To “renormalize” first-order marginals to be doubly stochastic, some au-
thors [120, 121, 8, 49, 110] have used the Sinkhorn iteration, which alternates
between normalizing rows and columns independently until convergence
is obtained. Convergence is guaranteed under mild conditions and it can be
shown that the limit is a nonnegative doubly stochastic matrix which is clos-
est to the original matrix in the sense that the Kullback-Leibler divergence
is minimized [8].

There are several problems which cause the Sinkhorn iteration to be
an unnatural solution in our setting. First, since the Sinkhorn iteration
only works for nonnegative matrices, we would have to first cap entries
to lie in the appropriate range, [0, 1]. More seriously, even though the
Sinkhorn iteration would guarantee a doubly stochastic higher order matrix
of marginals, there are several natural constraints which are violated when
running the Sinkhorn iteration on higher-order marginals. For example,
with second-order (ordered) marginals, it seems that we should at least
enforce the following symmetry constraint:

h(σ : σ(k, `) = (i, j)) = h(σ : σ(`,k) = (j, i)),

which says, for example, that the marginal probability that Alice is in Track
1 and Bob is in Track 2 is the same as the marginal probability that Bob is
in Track 2 and Alice is in Track 1. Another natural constraint that can be
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broken is what we refer to as lower-order marginal consistency. For example,
it should always be the case that:

h(j) =
∑
i

h(i, j) =
∑
k

h(j,k).

It should be noted that the doubly stochastic requirement is a special case of
lower-order marginal consistency — we require that higher-order marginals
be consistent on the 0th order marginal.

While compactly describing the constraints of the marginal polytope
exactly remains an open problem, we propose a method for projecting onto
a relaxed form of the marginal polytope which addresses both symmetry
and lower-order consistency problems by operating directly on irreducible
Fourier coefficients instead of on the matrix of marginal probabilities. After
each conditioning step, we apply a ‘correction’ to the approximate posterior
h(t) by finding the bandlimited function in the relaxed marginal polytope
which is closest to h(t) in an L2 sense. To perform the projection, we
employ the Plancherel Theorem [29] which relates the L2 distance between
functions on Sn to a distance metric in the Fourier domain.

Proposition 61 (Plancherel Theorem). Let f and g be real-valued functions on
a finite group G. Then the L2 distance between f and g is given by:

∑
σ

(f(σ) − g(σ))2 =
1

|G|

∑
ν

dρνTr
((
f̂ρν − ĝρν

)T · (f̂ρν − ĝρν
))

. (9.2)

To find the closest bandlimited function in the relaxed marginal polytope,
we formulate a quadratic program whose objective is to minimize the
right side of Equation 9.2, and whose sum is taken only over the set of
maintained irreducibles, Λ, subject to the set of constraints which require
all marginal probabilities to be nonnegative. We thus refer to our correction
step as Plancherel Projection. Our quadratic program can be written as:

minimizeĥproj
∑
λ∈Λ

dλTr
[(
ĥ− ĥproj

)T
ρλ

(
ĥ− ĥproj

)
ρλ

]
subject to:

[
ĥproj

]
(n)

= 1,CλMIN ·
 ⊕
µDλMIN

K
λMIN ,µ⊕
`=1

ĥprojρµ

 ·CTλMIN

ij

> 0, for all (i, j),

where KλMIN and CλMIN are the precomputed constants from Equation 5.10.
We remark that even though the projection will produce a Fourier transform
corresponding to nonnegative marginals which are consistent with each
other, there might not necessarily exist a joint probability distribution on
Sn consistent with those marginals except in the special case of first-order
marginals.

Example 62. In Example 56, we ran the Kronecker conditioning algorithm using
all of the Fourier coefficients. If only the first-order coefficients are available,
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however, then the expressions for zeroth and first order terms of the posterior
(Equations 8.13,8.14) become:

f̂ · gρ(3) =
1

3!
·
[
f̂ρ(3) · ĝρ(3) + 4 ·

[
A(2,1)⊗(2,1)

]
1,1

]
, (9.3)

f̂ · gρ(2,1)
=
1

3!
·
[
f̂ρ(2,1) · ĝρ(3) + f̂ρ(3) · ĝρ(2,1) + 2 ·

[
A(2,1)⊗(2,1)

]
2:3,2:3

]
,

(9.4)

Plugging in the same numerical values from Example 56 and normalizing appro-
priately yields the approximate Fourier coefficients of the posterior:

[
ĥ(σ|z)

]
ρ(3)

= 1
[
ĥ(σ|z)

]
ρ(2,1)

=

[
−10/9 −77/400

77/400 4/3

]
,

which correspond to the following first-order marginal probabilities:

ĥτ(2,1)


A B C

Track 1 0 11/9 −2/9

Track 2 1 0 0

Track 3 0 −2/9 11/9

 .

In particular, we see that the approximate matrix of ‘marginals’ contains nega-
tive numbers. Applying the Plancherel projection step, we obtain the following
marginals:

ĥτ(2,1)


A B C

Track 1 0 1 0

Track 2 1 0 0

Track 3 0 0 1

 ,

which happen to be exactly the true posterior marginals. It should be noted however,
that rounding the ‘marginals’ to be in the appropriate range would have worked in
this particular example as well.

9.4 experiments

In this section we present the results of several experiments to validate
our approximate inference approach for identity management. We evalu-
ate performance first by measuring the quality of our approximation for
problems where the true distribution is known. Instead of measuring a
distance between the true distribution and the inverse Fourier transform
of our approximation, it makes more sense in our setting to measure error
only at the marginals which are maintained by our approximation. In the
results reported below, we measure the L1 error between the true matrix
of marginals and the approximation. If nonnegative marginal probabilities
are guaranteed, it also makes sense to measure KL-divergence.
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Figure 18: Kronecker Conditioning accuracy — we measure the accuracy of a
single Kronecker conditioning operation after some number of mixing
events.
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Figure 19: HMM accuracy — we measure the average accuracy of posterior
marginals over 250 timesteps, varying the proportion of mixing and
observation events.

9.4.1 Simulated data

We first tested the accuracy of a single Kronecker conditioning step by call-
ing some number of pairwise mixing events (which can be thought roughly
as a measure of entropy), followed by a single first-order observation. In the
y-axis of Figure 18, we plot the Kullback-Leibler divergence between the
true first-order marginals and approximate first-order marginals returned
by Kronecker conditioning. We compared the results of maintaining first-
order, and second-order (unordered and ordered) marginals. As shown
in Figure 18, Kronecker conditioning is more accurate when the prior is
smooth and unsurprisingly, when we allow for higher order Fourier terms.
As guaranteed by Theorem 60, we also see that the first-order terms of the
posterior are exact when we maintain second-order (ordered) marginals.

To understand how our algorithms perform over many timesteps (where
errors can propagate to all Fourier terms), we compared to exact inference
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(a) n = 6 with 50% mixing events and 50% observations
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(b) n = 6 with 30% mixing events and 70% observations

Figure 20: Accuracy as a function of time on two typical runs.

on synthetic datasets in which tracks are drawn at random to be observed
or swapped. As a baseline, we show the accuracy of a uniform distribution.
We observe that the Fourier approximation is better when there are either
more mixing events (the fraction of conditioning events is smaller), or when
more Fourier coefficients are maintained, as shown in Figure 19. We also
see that the Plancherel Projection step is fundamental, especially when
mixing events are rare.

Figures 20a and 20b show the per-timeslice accuracy of two typical runs of
the algorithm. The fraction of conditioning events is 50% in Figure 20a, and
70% in Figure 20b. What we typically observe is that while the projected and
nonprojected accuracies are often quite similar, the nonprojected marginals
can perform significantly worse during certain segments.

Finally, we compared running times against an exact inference algorithm
which performs prediction/rollup in the Fourier domain and condition-
ing in the primal domain. While the prediction/rollup step for pairwise
mixing models can be implemented in O(n!) time (linear in the size of the
symmetric group), we show running times for the more general mixing
models. Instead of the naive O((n!)2) complexity, its running time is a more
efficient O(n3n!) due to the Fast Fourier Transform [20]. It is clear that
our algorithm scales gracefully compared to the exact solution (Figure 21),
and in fact, we could not run exact inference for n > 8 due to memory
constraints. In Figure 22, we show empirically that the Clebsch-Gordan
coefficients are indeed sparse, supporting a faster conjectured runtime.

[ August 4, 2011 at 11:32 ]



9.5 conclusion 115

4 5 6 7 8
0

1

2

3

4

5
Running time of 10 forward algorithm iterations

n

R
u

n
n

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s

 

 

λ
MIN

=(n−1,1)

λ
MIN

=(n−2,2)

λ
MIN

=(n−2,1,1)

Exact

Figure 21: Running times: We compared running times of our polynomial time ban-
dlimited inference algorithms against an exact algorithm with O(n3n!)
time complexity

9.4.2 Identity management experiments

We also evaluated our algorithm on data taken from a real network of eight
cameras (Fig. 23a). In the data, there are n = 11 people walking around
a room in fairly close proximity. To handle the fact that people can freely
leave and enter the room, we maintain a list of the tracks which are external
to the room. Each time a new track leaves the room, it is added to the list
and a mixing event is called to allow for m2 pairwise swaps amongst the
m external tracks.

The number of mixing events is approximately the same as the number
of observations. For each observation, the network returns a color his-
togram of the blob associated with one track. The task after conditioning
on each observation is to predict identities for all tracks which are inside
the room, and the evaluation metric is the fraction of accurate predictions.
We compared against a baseline approach of predicting the identity of a
track based on the most recently observed histogram at that track. This
approach is expected to be accurate when there are many observations and
discriminative appearance models, neither of which our problem afforded.
As Figure 23b shows, both the baseline and first order model(without
projection) fared poorly, while the projection step dramatically boosted the
prediction accuracy for this problem. To illustrate the difficulty of predict-
ing based on appearance alone, the rightmost bar reflects the performance
of an omniscient tracker who knows the result of each mixing event and is
therefore left only with the task of distinguishing between appearances. We
conjecture that the performance of our algorithm (with projection) is near
optimal.

9.5 conclusion

In this chapter, we have presented an analysis of the errors which can
accumulate in bandlimited inference operations and argued that Fourier
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Figure 22: Clebsch-Gordan Sparsity: We measured the sparsity of the Clebsch-
Gordan coefficients matrices by plotting the number of nonzero co-
efficients in a Clebsch-Gordan coefficient matrix against the number
of total entries in the matrix for various n and pairs of irreducibles.
For each fixed tensor product pair, we see that the number of nonzero
entries scales sublinearly with respect to the total number of matrix
elements.

based approaches work well when the underlying distributions are diffuse
and are thus well approximated by low-frequency basis functions. While
inference operations such as convolution, normalization and shifting are
exact, problems can occur during conditioning in which errors in high-order
terms due to bandlimiting can be propagated to lower-order terms.

We showed that it is typically faster and more accurate to condition on
low-order observations which only involve a few items since their likeli-
hood functions are sparser in the Fourier domain, often preventing error
from propagating to the lower frequency levels (Theorem 60) Bandlimited
conditioning can, on occasion, result in Fourier coefficients which corre-
spond to no valid distribution. We showed, however, that the problem can
be remedied by projecting to a relaxation of the marginal polytope.

Finally, our evaluation on data from a camera network shows that our
methods perform well when compared to the optimal solution in small
problems, or to an omniscient tracker in larger problems. Furthermore, we
demonstrated that our projection step is fundamental in obtaining these
high-quality results.

Algebraic methods have recently enjoyed a surge of interest in the ma-
chine learning community. We believe that our unified approach for per-
forming probabilistic inference over permutations by means of representing
distributions as additive combinations of Fourier basis functions, as well as
our gentle exposition of group representation theory and noncommutative
Fourier analysis will significantly lower the barrier of entry for machine
learning researchers who are interested in using or further developing
algebraically inspired algorithms which are useful for real-world problems.
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Figure 23: Evaluation on dataset from a real camera network.
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RANKINGS and permutations have recently become an active area of
research in machine learning due to their importance in information

retrieval and preference elicitation. Rather than considering full distribu-
tions over permutations, many approaches, like RankSVM (Joachims [68])
and RankBoost (Freund et al. [38]), have instead focused on learning a
single ‘optimal’ ranking with respect to some objective function.

There are also several authors (from both the statistics and machine
learning communities) who have studied distributions over permutation-
s/rankings (Mallows [91], Critchlow [26], Fligner and Verducci [36], Meila
et al. [97], Taylor et al. [126], Lebanon and Mao [86]). Taylor et al. [126]
consider distributions over Sn which are induced by the rankings of n
independent draws from n individually centered Gaussian distributions
with equal variance. They compactly summarize their distributions using
an O(n2) matrix which is conceptually similar to our first-order summaries
and apply their techniques to ranking web documents. Most other previous
approaches at directly modeling distributions on Sn, however, have relied
on distance based exponential family models. For example, the Mallows
model [91] defines a Gaussian-like distribution over permutations as:

h(σ; c,σ0) ∝ exp (−cd(σ,σ0)) , (10.1)

where the function d(σ,σ0) is the Kendall’s tau distance which counts the
number of adjacent swaps that are required to bring σ−1 to σ−10 . We will
discuss Mallows models in greater detail in Part III.

As we have shown in Part II, Fourier based methods (Diaconis [29],
Kondor et al. [80], Huang et al. [57]) offer a principled alternative method
for compactly representing distributions over permutations and performing
efficient probabilistic inference operations. Our work draws from two
strands of research — one from the data association/identity management
literature, and one from a more theoretical area on Fourier analysis in
statistics. In the following, we review several of the works which have led
up to our current Fourier based approach.

10.0.1 Previous work in identity management

The identity management problem has been addressed in a number of
previous works, and is closely related to, but not identical with, the clas-
sical data association problem of maintaining correspondences between
tracks and observations. Both problems need to address the fundamental
combinatorial challenge that there is a factorial or exponential number of
associations to maintain between tracks and identities, or between tracks
and observations respectively. A vast literature already exists on the the

119
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data association problem, beginning with the multiple hypothesis testing
approach (MHT) of Reid [112]. The MHT is a ‘deferred logic’ method in
which past observations are exploited in forming new hypotheses when a
new set of observations arises. Since the number of hypotheses can grow
exponentially over time, various heuristics have been proposed to help cope
with the complexity blowup. For example, one can choose to maintain only
the k best hypotheses for some parameter k (Cox and Hingorani [25]), using
Murty’s algorithm [103]. But for such an approximation to be effective, k
may still need to scale exponentially in the number of objects. A slightly
more recent filtering approach is the joint probabilistic data association filter
(JPDA) [9], which is a suboptimal single-stage approximation of the optimal
Bayesian filter. JPDA makes associations sequentially and is unable to cor-
rect erroneous associations made in the past [109]. Even though the JPDA
is more efficient than the MHT, the calculation of the JPDA association
probabilities is still a #P-complete problem [21], since it effectively must
compute matrix permanents. Polynomial approximation algorithms to the
JPDA association probabilities have recently been studied using Markov
chain Monte Carlo (MCMC) methods [106, 105].

The identity management problem was first explicitly introduced in Shin
et al. [120]. Identity management differs from the classical data association
problem in that its observation model is not concerned with the low-level
tracking details but instead with high level information about object identi-
ties. Shin et al. [120] introduced the notion of the belief matrix approximation
of the association probabilities, which collapses a distribution over all pos-
sible associations to just its first-order marginals. In the case of n tracks
and n identities, the belief matrix B is an n×n doubly-stochastic matrix
of non-negative entries bij, where bij is the probability that identity i is
associated with track j. As we already saw in Chapter 5, the belief ma-
trix approximation is equivalent to maintaining the zeroth- and first-order
Fourier coefficients. Thus our current work is a strict generalization and
extension of those previous results.

An alternative representation that has also been considered is an infor-
mation theoretic approach (Shin et al. [121], Schumitsch et al. [115, 116]) in
which the density is parameterized as:

h(σ;Ω) ∝ exp Tr
(
ΩT · τ(n−1,1)(σ)

)
.

In our framework, the information form approach can be viewed as a
method for maintaining the Fourier transform of the log probability distri-
bution at only the first two irreducibles. The information matrix approach
is especially attractive in a distributed sensor network setting, since, if the
columns of the information matrix are distributed to leader nodes tracking
the respective targets, then the observation events become entirely local
operations, avoiding the more expensive Kronecker conditioning algorithm
in our setting. On the other hand, the information matrix coefficients do
not have the same intuitive marginals interpretation afforded in our setting,
and moreover, prediction/rollup steps cannot be performed analytically
in the information matrix form. Normalization is also difficult in the in-
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formation domain as it involves computing the matrix permanent of the
matrix exp(Ω), where the exponentiation is pointwise, and is consequently
a #P-hard problem.

As in many classical data structures problems there are representational
trade-off issues: some operations are less expensive in one representation
and some operations in the the other. The best choice in any particular
scenario will depend on the ratio between observation and mixing events.
Recently, in Jiang et al. [67], we propose a maximum entropy based method
for converting between the Fourier-based representation and the informa-
tion representation. Taking a hybrid approach of both representations, we
switch between the Fourier and information domains during inference
depending on the ratio of observation to mixing events, balancing between
algorithmic efficiency and approximation quality.

10.0.2 Previous work on Fourier-based approximations

The concept of using Fourier transforms to study probability distributions
on groups is not new, with the earliest papers in this area having been
published in the 1960s by Grenander [45]. Willsky [136] was the first to
formulate the exact filtering problem in the Fourier domain for finite
and locally compact Lie groups and contributed the first noncommutative
Fast Fourier Transform algorithm (for metacyclic groups). However, he
does not address approximate inference, suggesting instead to always
transform to the appropriate domain for which either the prediction/rollup
or conditioning operations can be accomplished using a pointwise product.
While providing significant improvements in complexity for smaller groups,
his approach is still infeasible for our problem given the factorial order of
the symmetric group.

Diaconis [29] utilized the Fourier transform to analyze probability dis-
tributions on the symmetric group in order to study card shuffling and
ranking problems. His work laid the ground for much of the progress made
over the last two decades on probabilistic group theory and noncommuta-
tive FFT algorithms (Clausen and Baum [20], Rockmore [113]).

Kondor et al. [80] was the first to show that the data association problem
could be efficiently approximated using FFT factorizations. In contrast to
our framework where every model is assumed to be have been specified
in the Fourier domain, they work with an observation model which can
be written as the indicator function of cosets of subgroups of the form
Sk ⊂ Sn.

Conceptually, one might imagine formulating a conditioning algorithm
which applies the Inverse Fast Fourier Transform (IFFT) to the prior dis-
tribution, conditions in the primal domain using pointwise multiplication,
then transforms back up to the Fourier domain using the FFT to obtain
posterior Fourier coefficients. While such a procedure would ordinarily be
intractable because of the factorial number of permutations, [80] elegantly
shows that for certain coset-based observation models, it is not necessary
to perform the full FFT recursion to do a pointwise product. They exploit
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this observation to formulate an efficient conditioning algorithm whose
running time depends on the complexity of the observation model (which
can roughly be measured by the number of irreducibles required to fully
specify it).

Our work generalizes the conditioning formulation from [80] in the
sense that it can work for any observation model and extends easily to
similar filtering problems over any finite group. In the case that the obser-
vation model is specified at sufficiently many irreducibles, our conditioning
algorithm (prior to the projection step) returns the same approximate prob-
abilities as the FFT-based algorithm. For example, we can show that the
observation model given in Equation 7.12 is fully specified by two Fourier
components, and that both algorithms have identical output. Additionally,
[80] do not address the issue of projecting onto legal distributions, which,
as we show in our experimental results is fundamental in practice.

Finally, over the last four years since both our paper (Huang et al. [57])
and Kondor et al. [80] were first published in the machine learning com-
munity, there have been a number of related papers on Fourier analy-
sis for permutations or similar ideas, including Kondor and Borgwardt
[79], Jagabathula and Shah [64], Guibas [47], Huang et al. [60], Huang and
Guestrin [54], Kondor [78], Kondor and Barbosa [81], Kakarala [69], Jiang
et al. [67], Huang and Guestrin [56]. Notably, Risi Kondor has published a
number of works on the application of Clausen’s FFT based methods for
graph theoretic problems, such as computing compact graph descriptors
([79]) and efficient optimization for quadratic assignment problems ([78]).
Most recently, Wimmer [137] has applied Fourier analytic techniques in a
learning theoretic setting.
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11
O V E RV I E W O F PA RT I I I : M U LT I P L I C AT I V E
D E C O M P O S I T I O N S

IN part of II of this thesis, we have explored additive Fourier-based decom-
positions for addressing the probabilistic representation and inference

problem for permutations. Inspired by the popular graphical models litera-
ture in machine learning, we consider in part III, multiplicative decompositions
of distributions over permutations.

Many probabilistic computations become greatly simplified when dealing
with distributions which factor into a product of noninteracting distribu-
tions. For example, the popular naive Bayes assumption for classification,
which assumes that the features in a problem are fully independent condi-
tioned on a class label, allow one to develop fast classification algorithms
and to learn parameters with low sample complexity. Generalizations of the
naive Bayes model, such as Bayesian networks and Markov random fields
allow one to capture the similar computational benefits with increased
model expressiveness.

Taking advantage of probablistic independence with permutation data,
however, is not as simple as it is with other data types, due to the mutual
exclusivity assumptions for permutations which disallow items from map-
ping to the same target (thus inducing an explicit dependence between
every pair of items). In part III we discuss such issues which are specific to
the symmetric group in detail, and in particular, part of our focus in Part III
lies in understanding the interaction between additive and multiplicative
decompositions. The following is an outline of the main contributions as
wel as a roadmap of the chapters ahead in Part III.

• In Chapter 12, we examine the simplest case of a multiplicative
decomposition, in which subsets of items are fully independent of
each other, in the probabilistic sense, and characterize the constraints
on the Fourier coefficients of a distribution in which there exists
independence structure.

We develop algorithms for detecting independence using Fourier
coefficients, allowing one to exploit both additive and multiplicative
decomposition for the purposes of scalable representation and infer-
ence. We apply our algorithms to track large numbers of objects by
adaptively finding independent subgroups of objects and factoring
the distribution appropriately.

• Unfortunately, while full independence can sometimes be a reason-
able assumption for tracking problems, it is rarely so for ranking.
In Chapter 13 we introduce an intuitive generalization of the notion
of probabilistic independence for permutations, riffled independence,
based on interleaving independent rankings of subsets of items, as
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if one were shuffling two piles of cards together. We show our gen-
eralized notion of riffled independence to be a more appropriate
version of independence for ranked data and exhibit evidence that
riffled independence relations can approximately hold in real ranked
datasets.

We also discuss the problem of estimating parameters of a riffle inde-
pendent model from ranking data. To perform such computations in
a scalable way, we develop algorithms that can be used in the Fourier-
theoretic framework of Part II for joining riffle independent factors
(RiffleJoin), and for teasing apart the riffle independent factors from a
joint (RiffleSplit), and provide theoretical and empirical evidence that
our algorithms perform well.

• In Chapter 14, we provide an efficient, automated method for discov-
ering sets of items which are riffle independent from a training set of
rankings. We show that our clustering-like algorithms can be used
to discover meaningful latent coalitions from real preference ranking
datasets and to learn the structure of hierarchically decomposable
models based on riffled independence.

• Where Chapters 13 and 14 are primarily concerned with representation,
Chapter 15 addresses the problem of inference, and in particular, it
discusses the question of conditioning a riffle independent prior
distribution.

In Part II, we showed that it is more efficient and more accurate to
condition on low-order observations in the Fourier domain. The same
insights do not apply for riffle independent representations. We show
instead that one can exploit riffle independent structure of a prior
distribution to efficiently condition on observations which take the
form of partial rankings.

Using these ideas for efficient inference, we propose an algorithm that
is capable of efficiently estimating the structure and parameters of
riffle independent models from heterogeneous collections of partially
ranked data. We apply our methods to real voting and preference
data evidencing the effectiveness of our methods.

The contributions of Part III have also appeared in publication in the
following articles:

[1] Jonathan Huang, Carlos Guestrin, Xiaoye Jiang, and Leonidas J. Guibas.
Exploiting probabilistic independence for permutations. Journal of
Machine Learning Research - Proceedings Track, 5:248–255, 2009.

[2] Jonathan Huang and Carlos Guestrin. Riffled independence for ranked
data. In Yoshua Bengio, Dale Schuurmans, John Lafferty, Chris K. I.
Williams, and Aron Culotta, editors, Advances in Neural Information
Processing Systems 22, NIPS ’08, pages 799–807. 2009.
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[3] Jonathan Huang and Carlos Guestrin. Learning hierarchical riffle
independent groupings from rankings. In Proceedings of the 27th Annual
International Conference on Machine Learning, ICML ’10, pages 455–462,
Haifa, Israel, 2010.

[4] Jonathan Huang and Carlos Guestrin. Uncovering the riffled indepen-
dence structure of ranked data. http://arxiv.org/abs/1006.1328, 2011.

[5] Jonathan Huang, Ashish Kapoor, and Carlos Guestrin. Efficient proba-
bilistic inference with partial ranking queries. In The 27th Conference on
Uncertainty in Artificial Intelligence, UAI ’11, Barcelona, Spain, July 2011.

[ August 4, 2011 at 11:32 ]



[ August 4, 2011 at 11:32 ]



12
F U L LY I N D E P E N D E N T D E C O M P O S I T I O N S

IN Part II, we showed how low frequency Fourier coefficients capture
intuitively interpretable marginals, and presented general algorithms for

efficient approximate inference operations, such as marginalization and
conditioning, which can be performed completely in the Fourier domain.
Unfortunately, as we have discussed in previous chapters, the Fourier based
approach still suffers from two shortcomings:

• While low frequency Fourier coefficients provide a principled ap-
proximation to the underlying distribution and only require storing
polynomially many numbers, the polynomials can grow quite fast for
practical applications.

• In a phenomenon reminiscent of the Heisenberg uncertainty princi-
ple, bandlimited approximations which discard high frequencies are
most effective with diffuse distributions since smooth functions tend
to be well approximated by linear combinations of low frequency
basis functions, but are less effective at approximating highly peaked
distributions.

In a sense, these two shortcomings are at odds with each other since we
can always achieve better approximations to sharp functions by maintaining
higher frequency Fourier coefficients. However, an interesting observation
is that when the distribution is sharp, it would make more sense to break
up the problem into smaller parts and to reason about disjoint subsets of
objects independently of each other.

Consider again the identity management problem. If we are completely
uncertain about the assignment of people to tracks, and have a uniform
distribution over permutations, this smooth distribution can be represented
with only one nonzero parameter in the Fourier domain. At the limit when
we know the location of every identity, our distribution becomes very
peaked, and we may need to maintain n! nonzero Fourier coefficients. In
this peaked setting, however, there is no reason to track all n identities
jointly, and we can break up the problem into n subproblems. In this
chapter, we propose a principled method based on exploiting probabilistic
independence which tackles both issues by trying to “get the best of both
worlds”.

The main contributions of this chapter are:

• We characterize the constraints on the Fourier coefficients of a distri-
bution over permutations implied by probabilistic independence.

• We present a number of simple algorithms which operate entirely
in the Fourier domain for combining factors to form a joint distri-
bution and factoring a distribution, respectively. Our algorithms are
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fully general in the sense that they work for any distribution over
permutations.

• We prove theoretical results showing how many Fourier terms are
required in our Join /Split algorithms to achieve a desired number
of Fourier terms in the result, and analyze the behaviour of our
algorithms in near-independent situations in which a distribution
does not fully factor.

• We discuss a method for detecting probabilistic independence using
the Fourier coefficients of a distribution.

• We use our algorithms to adaptively decompose large identity man-
agement problems into much smaller ones, improving previous meth-
ods both in scalability and approximation quality.

12.1 independence on the symmetric group and first-order

conditions

While band-limiting our representation can decrease the storage cost from
O(n!) to some polynomial in n, maintaining the sth-order marginals re-
quires, in the worst-case, O(n2s) space. Thus, for small n we can maintain
higher order coefficients (larger s), but this representation quickly becomes
intractable as n becomes large. Over the next sections, we will show how
probabilistic independence is manifested in the Fourier coefficients of a
distribution, and how, by exploiting this independence, we can break our
distribution into smaller subgroups, which allow us to maintain higher
order coefficients.

In this section, we begin by defining independence and discussing a
simple condition on the matrix of first-order marginal probabilities implied
by independence.

Definition 63. Consider the set Ain = {1, . . . ,p} ⊂ {1, . . . ,n} and its com-
plement Bin = {p + 1, . . . ,n}. σ(Ain) = (σ(1), . . . ,σ(p)) and σ(Bin) =

(σ(p+ 1), . . . ,σ(n)) are said to be independent under a distribution h over
permutations of {1, . . . ,n} if h factors as

h(σ) = f(σ(Ain)) · g(σ(Bin)).

The function f, for example, is a marginal distribution for mappings of
{1, . . . ,p} into the set {1, . . . ,n}. As we shall see in the next section, however,
we will in fact be able work with f as if it were a function on Sp due to
mutual exclusivity constraints (and similarly, we will be able to work with
g as if it were a function on Sn−p).

As an example, if σ = [3, 4, 2, 1] ∈ S4 and Ain = {1, 2} and Bin =

{3, 4} are independent, then h(σ) = h(σ([1, 2]) = [3, 4]) · h(σ([3, 4]) = [2, 1]).
We will refer to Ain and Bin as cliques since the variables of Ain and
Bin form disjoint cliques in the graphical model representation of the
above independence relation. Though in general we will want to consider
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Figure 24: Examples of first-order independence: In (a) and (c), we show how the
identities and tracks can be partitioned into disjoint subsets, Ain, Bin,
Aout, and Bout. (b) and (d), show an example of what the correspond-
ing first-order marginals would look like.

problems in which the subset Ain is arbitrary, we focus on Ain = {1, . . . ,p}
for now and defer the discussion of arbitrary splits until Section 12.4. In
this section, we discuss a simple first-order criterion for independence on
the symmetric group and show that it naturally leads us to study functions
over product groups of the form Sp × Sq, where p+ q = n.

12.1.1 First-order conditions

Due to the mutual exclusivity constraints associated with permutations, a
necessary (but not sufficient) condition for a distribution h on permutations
to factor into a product of factors over Ain and Bin is that there must
exist a subset Aout ⊂ {1, . . . ,n} of the same size as Ain such that, with
probability 1, elements of Ain map to Aout and elements of Bin map
to Bout = {1, . . . ,n} \ Y. We will refer to the above condition as the first-
order independence criterion. Intuitively, a distribution can only factor into
independent parts if the set {1, . . . ,n} can be partitioned into disjoint subsets
of objects which do not interact with one another. See Figures 24a and 24c
for some examples.

Lemma 64 (First-order independence condition). If σ(Ain) and σ(Bin) are
independent under the distribution h, then there exists a subset Aout ⊂ {1, . . . ,n}
with |Aout| = |Ain| such that h(σ) = 0 unless σ(Ain) ⊂ Aout.1

1 With some abuse of notation, we use σ(Ain) ⊂ Aout to denote the fact that the permutation
σ maps elements Ain (people) to elements of Aout (tracks).
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Figure 25: Approximate first-order independence: In practice, we expect first-order
independence to only hold approximately.

Proof. Define the sets: Aout = {k : h(σ(i) = k) > 0 for some i ∈ Ain}, and
Z = {k : h(σ(j) = k) > 0 for some j ∈ Bin}. By construction, h(σ) = 0

unless σ(Ain) is a permutation of elements in Y (and σ(Bin) is some
permutation of elements in Z), so we need only show that |Aout| = |Ain|.
By mutual exclusivity, |Ain| 6 |Aout| and |Bin| 6 |Z|. We now show that
Aout ∩ Z = ∅, which will imply that |Aout| = |Ain|. Suppose that there
exists some k ∈ Aout ∩ Z. Then by the definitions of Aout and Z, there
exists i ∈ Ain and j ∈ Bin such that both h(σ(i) = k) > 0 and h(σ(j) =

k) > 0. However, by mutual exclusivity, h(σ(i) = k andσ(j) = k) = 0, and
by independence, we see that h(σ(i) = k)h(σ(j) = k) = 0, thus arriving at
a contradiction since we assumed that neither h(σ(i) = k) nor h(σ(j) = k)
is equal to zero.

To see why the first-order independence condition is an insufficient
indicator of independence, consider the simple example of a distribution
on S4 which always maps the set Ain = {1, 2} to Aout = {1, 2} and the set
Bin = {3, 4} to Bout = {3, 4}, but is constrained to map 1 to 1 whenever
3 maps to 3. In this case, the first-order marginals exhibit independence,
but the distribution is not independent when we examine the higher order
components.

Despite its insufficiency, the first-order independence condition plays a
crucial role for us in several ways. As we discuss later, it can serve as a first
pass at detecting independence as it reduces the detection problem into
a clustering-like problem. On a somewhat more theoretical level, it also
suggests that we should be thinking about groups of the form Sp×Sq ⊂ Sn,
where |Ain| = |Aout| = p and |Bin| = |Bout| = n− p = q.

In particular, restated using group theoretic terminology, the first-order
condition tells us that if a distribution h factors independently over Ain
and Bin, then it must be supported on a left Sp × Sq–coset — we will
discuss the implications of this observations in Section 12.3, in which we
derive Join and Split algorithms.
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12.2 fourier theoretic characterizations of probabilistic in-
dependence

In this section, we return to probabilistic independence and generalize
the results of Section 12.1.1 to hold for higher-order Fourier terms. Since
we maintain the Fourier coefficients of the distribution instead of the
actual distribution, there are several technical challenges associated with
(1) splitting a distribution into independent factors, (2) joining independent
factors to form a joint distribution, and (3) detecting independent subsets
in the Fourier domain. To solve these problems, we will relate the Fourier
coefficients of the joint distribution h with the Fourier coefficients of the
factors f and g.

In Part III, we will use σp and σq to refer to permutations in Sp and
Sq respectively. However, the notation [σp,σq] will (abusively) denote the
following permutation in Sn:

[σp,σq] = [σp(1), . . . ,σp(p),σq(1) + p, . . . ,σq(q) + p]. (12.1)

Thus for σp = [1, 2, 3] and σq = [3, 2, 1], the [σp,σq] is the permutation
[1, 2, 3, 6, 5, 4] (instead of [1, 2, 3, 3, 2, 1], which is not a legitimate permuta-
tion). The subset of permutations in Sn which can be written as σ = [σp,σq]
is Sp × Sq (see Equation 12.1). Elements in Sp × Sq ⊂ Sn permute the in-
dices within each subset, {1, . . . ,p} and {p+ 1, . . . ,n}, amongst themselves
but never across subsets.

In this section we focus on the special case when Ain = Aout = {1, . . . ,p}
(we show how to deal with general Ain and Aout when we discuss the
detection step). We therefore assume that:

h(σ) =

{
f(σp)g(σq) if σ = [σp,σq] ∈ Sn

0 otherwise
, (12.2)

for distributions f : Sp → R and g : Sq → R.
To formulate our algorithms, we will relate the Fourier coefficients of

the joint distribution h to the Fourier coefficients of the individual factors
f and g. The main contribution of this section is a structural result show-
ing that the Fourier coefficient matrices of a distribution which factors
independently decomposes in a particular way.

Before beginning, we remind the reader of how the first-order matrix
of marginals for the joint distribution h must decompose. Under the as-
sumption that h factors independently with Ain = Aout = {1, . . . ,p}
(and Bin = Bout = {p+ 1, . . . ,n}), the first-order condition tells us that
h(σ(i) = j) = 0 whenever i > p and j 6 p, and vice versa. We can there-
fore conclude that the first-order matrix decomposes as a block-diagonal
matrix with two blocks of sizes p and q respectively (see Figure 24b). With
higher-order Fourier coefficient matrices, the decomposition becomes more
complicated. As we see in Section 12.2.1, in addition to a block-diagonal de-
composition with respect to a certain basis, there is also Kronecker product
structure within each block.
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12.2.1 Higher-order characterizations

To characterize how higher-order Fourier terms must decompose, our story
begins with a brief excursion into the representation theory of groups of
the form Sp × Sq. While the permutation σ = [σp,σq] can be seen as an
element of Sn, it can additionally be viewed as an element of the subgroup
Sp × Sq. Thus, evaluated at an element σ ∈ Sp × Sq, any irreducible, ρλ
of Sn, can also be viewed as a representation of the group Sp × Sq. As a
representation of Sp × Sq, however, ρλ is not necessarily irreducible, but
it can be related to the irreducibles of Sp × Sq using Equation 5.4, as we
show in the following.

12.2.2 Littlewood Richardson decomposition

But what are the irreducibles of Sp × Sq? We use a standard representation
theoretic result that the set of irreducibles of a direct product of two groups
H × K is exactly the set of all pairwise tensor (or Kronecker) products of
irreducible representations of H and K. To be precise, we will provide a
formal definition of Kronecker product representations.

Definition 65. Suppose ρλ is a degree ` representation of Sp and ρµ a
degree m representation of Sq. The Kronecker product representation is the
function ρλ⊗ ρµ mapping elements in Sp× Sq to `m× `m matrices defined
by:

ρλ ⊗ ρµ([σp,σq]) ≡ ρλ(σp)⊗ ρµ(σq),

where σp ∈ Sp and σq ∈ Sq.

Note that while this definition of the Kronecker product representation
uses the same Kronecker product as that of Equation 8.6, the representations
are distinct since in the first case (from Chapter 8), one obtains a new
representation of Sn whereas here, we obtain a representation of Sp × Sq.
It is a standard result that the Kronecker product representation is indeed
a representation of the group Sp × Sq, and moreover, the complete set of
irreducible representations of Sp × Sq is exactly the set: {ρµ ⊗ ρν}, where µ
and ν range over partitions of p and q, respectively.

Example 66. As an example, there are 9 irreducible representations of the product
group S3 × S3 since there are three irreducibles of S3 (each corresponding to one
of the three partitions, (3), (2, 1) and (1, 1, 1)) and thus the set of irreducible
representations, and their dimensions (denoted by d) are:
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ρ(3) ⊗ ρ(3) (d = 1 · 1 = 1)
ρ(3) ⊗ ρ(2,1) (d = 1 · 2 = 2)
ρ(3) ⊗ ρ(1,1,1) (d = 1 · 1 = 1)
ρ(2,1) ⊗ ρ(3) (d = 2 · 1 = 2)
ρ(2,1) ⊗ ρ(2,1) (d = 2 · 2 = 4)
ρ(2,1) ⊗ ρ(1,1,1) (d = 2 · 1 = 2)
ρ(1,1,1) ⊗ ρ(3) (d = 1 · 1 = 1)
ρ(1,1,1) ⊗ ρ(2,1) (d = 1 · 2 = 2)
ρ(1,1,1) ⊗ ρ(1,1,1) (d = 1 · 1 = 1)

representation ρλ, of Sn, when evaluated at a permutation σ = [σp,σq]
which lies in the subgroup Sp × Sq, therefore has the following decomposi-
tion by Equation 5.4:

Lλµν · ρλ(σ) · Lλµν
T
=
⊕
µ,ν

cλµ,ν⊕
`=1

ρµ(σp)⊗ ρν(σq). (12.3)

The coupling matrix Lλµν, along with the multiplicities cλµ,ν are assumed
to be precomputed (see Appendices C and D). The following Proposition
gives the desired relation between the Fourier coefficients of the joint and
the Fourier coefficients of the factors.

Proposition 67. Given the Fourier coefficients of two independent factors f and
g, the Fourier coefficient matrices of the joint distribution h, are:

ĥρλ = L
λ
µν

T ·
⊕
µ,ν

cλµ,ν⊕
`=1

(
f̂ρµ ⊗ ĝρν

)
· Lλµν. (12.4)

Proposition 67 is significant because it completely characterizes the form
of the Fourier matrices of the joint distribution at all frequencies. Recalling
that (Lemma 64) the first-order marginals are constrained to be block di-
agonal, we see (ignoring the change of basis, which does not depend on
f or g) that Equation 12.4 in fact imposes block diagonal structure on the
Fourier matrices at all orders. Additionally, we see that each nonzero block
has Kronecker structure at higher orders and that the coefficients of the
joint are redundant in the sense that information at lower frequencies of
the factors f and g are duplicated to multiple higher frequencies of h. The
proof of the proposition is as follows.

Proof of Proposition 67.

Lλµν ·
[
ĥ
]
ρλ
· Lλµν

T
= Lλµν ·

(∑
σ∈Sn

h(σ)ρλ(σ)

)
· Lλµν

T
,

(Definition of Fourier transform)
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=
∑

σ∈Sp×Sq

h([σp,σq])
(
Lλµν · ρλ(σ) · Lλµν

T
)

, (12.5)

(h is supported on Sp × Sq, linearity)

=
∑

σ∈Sp×Sq

h([σp,σq])
(⊕
µ,ν

cλµ,ν⊕
`=1

ρµ(σp)⊗ ρν(σq)
)

,

(Equation 5.2) (12.6)

=
⊕
µ,ν

cλµ,ν⊕
`=1

(∑
σ∈Sp

f(σp)ρµ(σp)

)
⊗
(∑
σ∈Sq

g(σq)ρν(σq)

)
,

(12.7)

(h = f · g, Bilinearity of ⊗)

=
⊕
µ,ν

cλµ,ν⊕
`=1

(
f̂ρµ ⊗ ĝρν

)
, (12.8)

(Definition of Fourier transform).

We remark that the independence assumption in Proposition 67 is necessary
and Equation 12.4 does not hold for arbitrary functions even if they are
zero outside of Sp × Sq. �

As it turns out, the multiplicities, cλµ,ν, are equivalent to what mathe-
maticians have studied in different contexts as Littlewood–Richardson (LR)
coefficients [114]. The LR coefficients tell us which cross-terms contribute
to the joint. For example, it can be shown that that first order terms corre-
sponding to the partition (n− 1, 1) can be reconstructed using only three
terms, (p)⊗ (q), (p− 1, 1)⊗ (q), and (p)⊗ (q− 1, 1). In the following for-
mulas, we use the notation ρλ ↓Sp×Sq to denote decompositions which are
only guaranteed to hold when ρλ is evaluated at permutations which are
members of the subgroup Sp× Sq. The first order decomposition is written
as:

ρ(n−1,1) ↓Sp×Sq≡ (ρ(p)⊗ ρ(q))⊕ (ρ(p−1,1)⊗ ρ(q))⊕ (ρ(p)⊗ ρ(q−1,1)),

where we have suppressed the notation for the basis transforms, Lλµν, for
simplicity. The following formulas (discussed in Appendix C) are general
for decomposing second-order terms:

ρ(n−2,2) ↓Sp×Sq≡(ρ(p) ⊗ ρ(q))⊕ (ρ(p) ⊗ ρ(q−1,1))

⊕ (ρ(p) ⊗ ρ(q−2,2))⊕ (ρ(p−1,1) ⊗ ρ(q))
⊕ (ρ(p−1,1) ⊗ ρ(q−1,1))⊕ (ρ(p−2,2) ⊗ ρ(q)),

ρ(n−2,1,1) ↓Sp×Sq≡(ρ(p) ⊗ ρ(q−1,1))⊕ (ρ(p) ⊗ ρ(q−2,1,1))

⊕ (ρ(p−1,1) ⊗ ρ(q))⊕ (ρ(p−1,1) ⊗ ρ(q−1,1))

⊕ (ρ(p−2,1,1) ⊗ ρ(q)).
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Computing the LR coefficients has been shown, in general, to be a #P-
complete problem [104]. For low-order Fourier terms (corresponding to
partitions with only a few rows), however, the Littlewood–Richardson rule
[114] computes the LR coefficients in reasonable time (see Appendix C).
We plan to make tables and code available online. We refer interested
readers to [114] for a more detailed discussion of the Littlewood–Richardson
rule. We note that while the LR coefficients have been studied in various
mathematical contexts [73, 114, 130, 43, 104], our work provides, to the best
of our knowledge, the first connection to probabilistic independence.

As for the coupling matrices, Lλµν, there are no known analytical formulas,
and in practice, acquiring these matrices requires considerable precomputa-
tion. As fundamental constants related to the irreducibles of the symmetric
group, however, they need only be computed once and for all and can be
stored in a table for all future reference. See Appendix D for a detailed
discussion of techniques for computing the coupling coefficient matrices
Lλµν.

In this section, we have characterized probabilistic independence in the
Fourier domain in a structural sense. We showed that Fourier terms of
the joint (written with respect to the appropriate basis) decompose not
only into block-diagonal components, like the first-order marginals, but
that each block decomposes as Kronecker products. More intriguing is
the possibility of defining relaxations of independence based on Equa-
tion 12.4. A first-order independent distribution, as we have discussed, is
one that cannot be distinguished from a distribution which fully factors
independently by examining only the first-order marginals. Likewise, one
can imagine defining higher-order notions. A second-order independent
distribution, for example, is one that cannot be distinguished from one that
fully factors by examining only the first and second order terms. While
such higher-order ‘relaxations’ of independence are not exactly full inde-
pendence, they can be thought of as approximations, and may turn out to
be sufficient in certain cases for applications of independence, just as the
pairwise independence assumption is often sufficient in certain randomized
algorithm theorems [100].

12.3 algorithms

We now discuss two sets of algorithms for merging independent factors
to form a joint distribution (Join), and for extracting independent factors
from a joint (Split). We first present (in Section 12.3.1) algorithms that are
directly based on the Littlewood–Richardson factorization (Proposition 67)
from the previous section. In Section 12.3.2, we present an alternative
algorithm inspired by ideas from the noncommutative Fast Fourier trans-
form [19, 20, 75] (Chapter 6) which does not require Littlewood–Richardson
coefficients/matrices to be precomputed.
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12.3.1 Littlewood-Richardson based method

12.3.1.1 Join.

The simpler operation of the two is the Join algorithm. Given the Fourier
transforms of independent distributions, f̂ and ĝ, the Fourier transform of
the joint, ĥ, can be constructed by simply forming the direct sum of appro-
priate tensor product terms f̂µ ⊗ ĝν, and conjugating by the precomputed
coupling matrix Lλµν (Equation 12.4). See Algorithm 12.1 for pseudocode.

One might worry that we would require maintaining high frequency
terms of the independent factors in order to construct low frequency terms
of the joint. We show, using the Littlewood–Richardson rule, that this is not
the case when we maintain sth-order marginals.

Theorem 68. For any integer s such that 0 6 s < n, define the following
partitions:

λMIN = (n− s, 1, . . . , 1︸ ︷︷ ︸
s times

),

µMIN = (p− k, 1, . . . , 1︸ ︷︷ ︸
k times

), νMIN = (q− `, 1, . . . , 1︸ ︷︷ ︸
` times

), (12.9)

where k = min(s,p− 1) and ` = min(s,q− 1). Given marginals of type µMIN

for f and of type νMIN for g, Join returns Fourier coefficients which can recon-
struct marginals of type λMIN exactly.

Theorem 68 formalizes the intuitive idea that it is possible, using the Join

algorithm, to exactly construct sth-order marginals of the joint distribution
using only the sth-order marginals of each independent factor. The proof
of Theorem 68 is given in the Appendix. A more general principle holds for
other partitions which do not take the form λMIN = (n− s, 1, . . . , 1), but
we will focus on the simpler and more intuitive case of sth-order marginals.

12.3.1.2 Split.

Given the Fourier transform of the joint, ĥ, we wish to formulate an
algorithm which computes the Fourier coefficients of the factors f̂ and
ĝ, assuming that the sets Ain = {1, . . . ,p} and Bin = {p + q, . . . ,n} are
independent under h(σ). Conceptually, we would like to simply “invert” the

Join algorithm by reading off the f̂µ and ĝν matrices from
⊕
µ,ν
⊕cλµν
`=1 f̂µ⊗

ĝν = Lλµν · ĥλ · Lλµν
T . The difficulty is that any specific Kronecker product

f̂µ⊗ ĝν, only determines f̂µ and ĝν up to a scaling factor, and furthermore,
in the approximate case when Ain and Bin are only “nearly” independent,
the appropriate blocks of the matrix Lλµν · ĥλ · Lλµν

T do not take the form
M1 ⊗M2.

As it turns out, however, we are in fact always able to determine the
matrix coefficients in f̂ and ĝ using only blocks of the form f̂µ⊗ 1, or 1⊗ ĝν,
allowing us to literally read off the matrices for f̂µ and ĝν.
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Theorem 69. Define λMIN, µMIN, and νMIN as in Theorem 68. For any
µD µMIN, there exists a block of Lλµν · ĥλ · Lλµν

T for some λD λMIN which is
identically equal to f̂µ.

Likewise, for any νD νMIN, there exists a block of Lλµν · ĥλ · Lλµν
T for

some λD λMIN which is identically equal to ĝν. See Algorithm 12.2 for
pseudocode for the Split algorithm and the appendix for a constructive
procedure that finds the appropriate partitions λ in Theorem 69. As a
corollary, we obtain a converse to Theorem 68 which says that given the
sth order marginals of the joint, we will be able to recover the sth order
marginals of the factors.

Corollary 70. Given marginals of type λMIN, Split returns Fourier coefficients
of the factors f and g which can be used to exactly reconstruct marginals of type
µMIN and νMIN, respectively.

A similar (refined) guarantee holds with respect to the lexicographical
ordering for partitions.

Theorem 71. Let k be a positive integer. The first k terms of f̂ and ĝ with respect
to the lexicographical ordering are sufficient for recovering the first k terms of ĥ
exactly. Conversely, the first k terms of ĥ are sufficient for recovering the first k
terms of f̂ and ĝ.

Finally, we discuss what happens when Split is called on a distribution h
which does not factor into independent distributions f and g. We show (proof
given in Appendix C) that when the first order independence condition is
satisfied (that is, when h(σ) = 0 for all σ /∈ Sp×Sq, but does not necessarily
factor into two independent terms), the Split algorithm still returns Fourier
coefficients of the relevant marginal distributions.

Theorem 72. Given the Fourier coefficients, ĥ of a distribution h satisfying
the first order independence condition (but which does not necessarily factor as
f · g), the Split algorithm returns the (exact) Fourier coefficients of the marginal
distributions over {1, . . . ,p} and {p+ 1, . . . ,n}.

When the first order condition does not apply, the result of Split does
not correspond to a normalized distribution, and so it is necessary in
practice to normalize the resulting factors to sum to one, which can be
performed in the Fourier domain by dividing every Fourier matrix by
f̂(n) (respectively, ĝ(n)) (Equation 8.1). Unlike the conditioning operations
presented in Chapter 8, the normalized outputs of the Split algorithm
are guaranteed to be a legal distribution in the sense that f(σp) > 0 and
f(σq) > 0 for all σp and σq provided that h is a legal distribution. Hence,
there is no need to project the resulting Fourier coefficient matrices into the
marginal polytope, as has been considered in Chapter 9.

12.3.2 FFT based method

In this section, we present an alternative set of Join/Split algorithms based
on the fast Fourier transform techniques that we presented in Chapter 6.
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Algorithm 12.1: Pseudocode for the Join algorithm. Input: Fourier coefficient
matrices of factors, {f̂ρ}ρ∈Λp , and {ĝρ}ρ∈Λq . Output: Fourier coefficient matrices
of joint distribution {ĥρ}ρ∈Λn .

Join({f̂ρ}ρ∈Λp , {ĝρ}ρ∈Λq ):

foreach λ such that λD λMIN do

ĥρλ ← Lλµν
T ·
(⊕

µ,ν
⊕cλµν
`=1 f̂ρµ ⊗ ĝρν

)
· Lλµν ;

end
return

(
{ĥρ}ρ∈Λn

)
;

Algorithm 12.2: Pseudocode for the Split algorithm. Input: Fourier coefficient
matrices of joint distribution {ĥρ}ρ∈Λn . Output: Fourier coefficient matrices of
factors, {f̂ρ}ρ∈Λp , and {ĝρ}ρ∈Λq .

Split:({ĥρ}ρ∈Λn )

foreach partition µ of p such that µD µMIN do
Find λD λMIN such that cλ

µ,(q) > 0 ;

f̂ρµ ← (µ, (q))-block of the matrixLλµν · ĥρλ · Lλµν
T ;

end
foreach partition ν of q such that νD νMIN do

Find λD λMIN such that cλ(p),ν > 0 ;

ĝρν ← ((p),ν)-block of the matrixLλµν · ĥρλ · Lλµν
T ;

end
return

(
{f̂ρ}ρ∈Λp , {ĝρ}ρ∈Λq

)
;

Recall that the insight behind the Clausen FFT is that one can decompose a
function on Sn into a sum of functions on Sn−1. The FFT then recursively
computes the Fourier transform of these smaller functions, and pieces them
together afterwards to form the Fourier transform of the original function.

In the following, we use iterated Embed/Restrict operations to work
with a function over Sp as if it were a function over Sn, and vice versa.
Both the Restrict and Embed operations can be performed in the Fourier
domain as we have discussed in Chapter 6.

Just as we have defined an Embed operation for functions over permuta-
tions, we can similarly define an Embed operation for permutations (we will
not need a Restrict operation). Given a permutation σp ∈ Sp, Embed[σp]

returns the following permutation in Sn:

Embed[σp](i) =

{
σp(i) if i 6 p

i if i > p
.

Note that if f is the distribution of the random variable σp, then Embed[f]

is the distribution of Embed[σp].

12.3.2.1 FFTJoin

The intuition behind our second Join algorithm, FFTJoin, comes from
the following interpretation of convolution. If σ1,σ2 ∈ Sn are random
permutations drawn independently from distributions f and g on Sn, then
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the distribution of the composition σ1σ2 is given by the convolution of the
two distributions, P1 ∗ P2.

To make use of convolution in the Join setting, we will write the permu-
tation [σp σq] as the following composition of permutations:

[σp σq] = (Embed
q[σp]) (Shift[Embed

p[σq],ωp,q,ωp,q]) ,

where ωp,q = [p+ 1,p+ 2, . . . ,n, 1, 2, . . . ,p] (written using one-line nota-
tion).

Example 73. Let p = q = 3 (n = 6), and suppose that σp = [1, 2, 3] and σq =

[3, 2, 1]. Then ω3,3 = ω
−1
3,3 = [4, 5, 6, 1, 2, 3], Embed

3[σp]
3 = [1, 2, 3, 4, 5, 6] and

Embed
3[σq] = [3, 2, 1, 4, 5, 6]. It can be checked that:

[σp,σq] =
(
Embed

3[σp]
) (

Shift[Embed
3[σq],ω3,3,ω3,3]

)
,

=
(
Embed

3[σp]
) (
ω3,3 Embed

3[σq]ω
−1
3,3

)
,

= [1, 2, 3, 4, 5, 6] ([4, 5, 6, 1, 2, 3][3, 2, 1, 4, 5, 6][4, 5, 6, 1, 2, 3]) ,

= [1, 2, 3, 4, 5, 6][1, 2, 3, 6, 5, 4],

= [1, 2, 3, 6, 5, 4].

Since σp and σq are independent, the permutations are Embed[σp] and
Shift[Embed[σq],ωp,q,ωp,q] are independent and we can convolve their
respective distributions to obtain the joint distribution. To achieve the same
result in the Fourier domain, notice that both the Shift and Embed op-
erations have Fourier domain counterparts that allow us to compute the
distributions of Embed[σp] and Shift[Embed[σq],ωp,q] from the distribu-
tions of σp and σq (see Chapter 6). Finally, using the convolution theorem
(Proposition 51), we can pointwise multiply the Fourier coefficient matrices
for each distribution to find the Fourier coefficients of the joint distribution.
See Algorithm 12.3 for pseudocode.

12.3.2.2 FFTSplit

Our FFT based algorithm for Split is based on a somewhat different inter-
pretation of convolution. We will view convolution here as an averaging (or
marginalization) operator. If h(σ) = f(σ(1), . . . ,σ(p)) ·g(σ(p+ 1), . . . ,σ(n)),
then f is the marginal distribution for (σ(1), . . . ,σ(p)) and g is the marginal
distribution for (σ(p+ 1), . . . ,σ(n)). Loosely speaking, to find the marginal
distribution for (σ(p+ 1), . . . ,σ(n)), for example, we will first sum over
all settings of (σ(1), . . . ,σ(p)}) by convolving the joint distribution by an
indicator function for the subgroup Sp, then iteratively use the Restrict

operator to obtain a function on Sq.
For simplicity, we will only discuss computing the marginal distribution

of (σ(p+ 1), . . . ,σ(n)). To adapt the following algorithm for computing
marginals of (σ(1), . . . ,σ(p)), one can use the Shift theorem (Equation 8.3).
In the following, we discuss each step in detail. See Algorithm 12.4 for
pseudocode.
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Algorithm 12.3: Pseudocode for the FFT-based Join algorithm. Input: Fourier co-
efficient matrices of the factors, {f̂ρ}ρ∈Λp and {ĝρ}ρ∈Λq . Output: Fourier coefficient
matrices of the joint distribution, {ĥρ}ρ∈Λn .

FFTJoin({f̂ρ}ρ∈Λp , {ĝρ}ρ∈Λq ):

f̂ ′ ← Embed
q[f̂] ;

ĝ ′ ← Shift[Embed
p[ĝ],ωp,q,ωp,q] ;

foreach λ such that λD λMIN do
ĥρλ ← f̂ ′ρλ · ĝ

′
ρλ ;

end
return

(
{ĥρ}ρ∈Λn

)
;

1. (Integrating over Sp) For the Split operation, we identify the group Sp
as a subgroup of elements in Sn which permute the first p elements
but fix the remaining q elements. The indicator function of Sp, δSp :

Sn → R, is therefore defined as:

δSp(σ) =

{
1 if σ(i) = i, for all p+ 1 6 i 6 n

0 otherwise
. (12.10)

Convolving the joint distribution h against δSp effectively integrates
over the variables {1, . . . ,p}. Thus,

h ′(σ) = [h ∗ δSp ](σ) =
∑
τ∈Sn

h(στ)δSp(τ
−1) =

∑
τ∈Sp

h(στ).

Using the convolution theorem again (Proposition 51), we compute
the Fourier coefficients of h ′ via a matrix multiplication at each
frequency level: ĥ ′λ = ĥλ · [δ̂Sp ]λ. The Fourier transform of indicator
functions of the form δSp can be computed efficiently (Chapter 6) and
[δ̂Sp ]ρλ is known to be a diagonal matrix for each partition λ.

2. (Restricting to Sq) We have shown that the marginal probability of σq
is given by h ′([σp,σq]) and that the Fourier transform of h ′ can be
computed. The function h ′, however, is still defined over Sn and we
would like to obtain a function of the form g : Sq → R. To do this,
we use the Restrict operator. Since Restrict drops arguments from
the right, we use the Shift operation to first swap the arguments of
h ′: hflip([σq,σp]) = Shift[[,h] ′,ωp,q,ωp,q], then iteratively call the
Restrict operation on hflip until we obtain a function on Sq.

12.4 scalable identity management by exploiting independence

As an application, we use our Fourier theoretic algorithms in the identity
management setting. In previous chapters, we have reasoned jointly over
assignments of all n tracks to all n identities. In realistic settings however,
we believe that it is often sufficient to only reason over small cliques of
tracks at a time. Thus, instead of maintaining Fourier coefficients over
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Algorithm 12.4: Pseudocode for the FFT-based Split algorithm. Input: Fourier
coefficient matrices of the joint distribution, {ĥρ}ρ∈Λn . Output: Fourier coefficient
matrices of the factors, {f̂ρ}ρ∈Λp and {ĝρ}ρ∈Λq .

FFTSplit({ĥρ}ρ∈Λn ):

//Compute the marginal over (p+ 1, . . . ,n)
foreach λ such that λD λMIN do

ĥ ′ρλ ← ĥρλ · [δ̂Sp ]ρλ ;
end
ĝ ← Restrict

p[Shift[ĥ ′,ωp,q,ωp,q]] ;
//Compute the marginal over (1, . . . ,p)
ĥ∗ ← Shift[ĥ,ω−1

p,q,ω−1
p,q] ;

foreach λ such that λD λMIN do
ĥ ′ρλ ← [ĥ∗]ρλ · [δ̂Sq ]ρλ ;

end
f̂ ← Restrict

q[Shift[ĥ ′,ωp,q,ωp,q]] ;

return
(
{f̂ρ}ρ∈Λp , {ĝρ}ρ∈Λq

)
;

Algorithm 12.5: Simplified pseudocode for adaptive identity management.

AdaptiveIDM:

//Initialize each track to be in its own clique
foreach clique c ∈ {1, . . . ,n} do

clique(c).ids ← c ;
clique(c).tracks ← c ;

end
//Initialize Fourier coefficients for each clique to the uniform distribution
foreach clique c ∈ {1, . . . ,n} do

f̂c(1) ← 1 ;
end
foreach timeslice t do

if tracks i and j mix then
if tracks i and j fall in different cliques then

ci ← clique containing track i;
cj ← clique containing track j;
Join cliques ci and cj and corresponding Fourier transforms f̂ci ,
f̂cj ;

end
c ← clique containing tracks i and j;
Apply Fourier domain prediction/rollup algorithm to clique c ;

end
if observe identity k at track i then

c ← clique containing track i;
Apply Fourier domain conditioning algorithm to clique c ;

end
foreach clique c do

Run balanced biclustering algorithm on clique c ;
if splitting criterion is satisfied then

Split clique c into smaller cliques ;
end

end
end

all of Sn, we search for independent cliques and adaptively split the dis-
tribution into factors over smaller cliques whenever possible. In order to
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find independent subsets of tracked identities, we first present a simple
clustering-based method for independence detection.

12.4.1 Detecting independent subsets of objects

In this section, we discard the assumption that Ain = Aout = {1, . . . ,p}
and deal with the problem of explicitly finding sets Ain and Aout such
that h(σ(Ain) ⊂ Aout) = 1 and h(σ(Bin) ⊂ Bout) = 1 as defined by the
first-order condition. We begin with the simple observation that if we knew
the sets Ain and Aout, then the first-order matrix of marginals would be
rendered block diagonal under an appropriate reordering of the rows and
columns (Figure 24b). Since Ain and Aout are unknown, our task is to find
permutations of the rows and columns of the first-order matrix of marginals
(Figure 24d) to obtain a block diagonal matrix. Viewing the matrix of first-
order marginals as a set of edge weights on a bipartite graph between tracks
and identities, we approach the detection step as a biclustering problem
(in which one simultaneously clusters the tracks and identities) with an
extra balance constraint forcing |Ain| = |Aout|. In our experiments, we use
the SVD-based technique presented in [138], which finds bipartite graph
partitions optimizing the normalized cut measure. We have modified their
algorithm slightly so that the output satisfies the balance constraint.

Assuming now that we have obtained the setsAin andAout via the above
clustering step, we can call the Split algorithm by first renaming the tracks
and identities so that Ain = Aout = {1, . . . ,p}. Suppose that, to achieve
this reordering, we must permute the Ain (people) using a permutation π1
and the Aout (tracks) using π2. The Shift Theorem (Equation 8.3) can be
applied to reorder the Fourier coefficients according to these new labels,
and we can then apply Algorithm 12.2 unchanged.

We have focused on detecting independence in the first-order sense. As
discussed in Section 12.1.1 however, this first-order notion is a necessary,
but insufficient condition for higher order independence. As an example
of when higher order terms are useful, consider the problem of tracking
players in a football game from visual footage, where players on opposing
teams are easily distinguishable from each other. In such a scenario, one
would not accidentally confuse players on one team for players on the other
team, and thus the first-order condition is satisfied. However, it might not
be appropriate to track two teams independently of one another. Knowing,
for example, that player A guards player B on the opposing team is valuable
information that would be discarded if the two teams were to be tracked
separately.

To deal with the fact that a candidate split might not be independent,
note first that by Theorem 72, if first-order independence does indeed
hold, then the Split algorithm returns the appropriate Fourier coefficients
for each marginal distribution. Additionally, if one is concerned with
independence at higher-order terms, note that our splitting algorithm is able
to factor the distribution at every order. Once this factoring is performed,
we can measure its effect on higher orders, e.g., using Plancherel’s Theorem

[ August 4, 2011 at 11:32 ]



12.5 experiments 145

(Proposition 61) to measure the distance between the original coefficients
and the factored result, and decide whether or not to retain the partition.

12.4.2 Adaptive identity management

In our adaptive approach (see Algorithm 12.5), we maintain a collection
of disjoint cliques over the tracks and identities. After conditioning on any
observation, we attempt to split. We also force splits whenever cliques grow
to be too large to handle. Upon splitting, we allow the representational
size to grow to higher orders — thus for very large n, we might only
maintain first-order coefficients, but for smaller sized cliques, we might
choose to represent higher-order coefficients. Finally, sometimes two tracks
can become so close together that it is hard to distinguish which individual
is on which track, in a mixing event. When these mixing events occur
between tracks belonging to distinct cliques, it is necessary to jointly reason
over objects from both cliques at once. We therefore merge the cliques
using our Join algorithm and perform a mixing on the newly formed joint
distribution as in Chapter 8.

12.5 experiments

We evaluted our adaptive identity management algorithm on a biotracking
dataset from [72]. In their data, there are 20 ants (Fig. 26a) moving in an
enclosed area. The data is interesting for our purposes since n is relatively
large compared to many other multi-object tracking datasets and there
are interesting movement patterns with plenty of mixing events (which
we log whenever ants walk within some distance of each other). At each
timestep, we allow each ant to ‘reveal’ its identity with some probability (in
our experiments, ranging from pobs = .005 to pobs = .05 per timeframe),
and our task is to jointly label all tracks with identities for all timeframes.
We measure accuracy using the fraction of correctly labeled tracks over the
entire sequence (note that the accuracy of random guessing is 1/n = 5% in
expectation). As a splitting criterion, we decide to split if, after clustering,
the sum over all off-block elements falls below a certain threshold ε (in all
experiments, we fixed ε = 1/(2n)).

In Figures 26b and 27a, we compare the performance of an adaptive
approach against the nonadaptive algorithm from [57] as we vary the ratio
of observations to mixing events. Figure 26b shows that the two algorithms
perform similarly in accuracy, with the nonadaptive approach faring slightly
better with fewer observations (due to more diffuse distributions) and
slightly worse with more observations (due to the fact that the adaptive
approach can represent higher-order Fourier terms). The real advantage
of our adaptive approach is shown in Figure 27a, which plots a running
time comparison. Since the conditioning step is the complexity bottleneck
of performing inference in the Fourier domain, the running time scales
according to the proportion of observations. However, since the adaptive
algorithm typically conditions smaller cliques on average (especially with
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(a) Small image from biotracking
data — there are twenty ants
moving in a tray in this dataset
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(b) Accuracy comparison — we compare our adap-
tive algorithm against the performance of the
nonadaptive algorithm from [59].

Figure 26: Experimental results on biotracking data

more observations), we see that it is far more scalable. In Figure 27b, we
plot the average number of cliques and sizes of cliques which were formed
in the same experiment. As expected, we see that the cliques get smaller
and more numerous as the number of observations grows.

Finally, we simulated larger tracking problems by taking m different seg-
ments of the ant data and tracking m ·n ants at the same time allowing for
ants to ‘teleport’ to other segments with some probability. Figure 27c shows
a comparison of average running time for these larger problems. Note
that at such sizes, we can no longer feasibly run the original nonadaptive
algorithms from [57, 80].

12.6 conclusion

A pervasive technique in machine learning for making large problems
tractable is to exploit probabilistic independence structures for decompos-
ing large problems into much smaller ones. It is the structure of (conditional)
independence, for example, which has made Bayes net and Markov random
field representations so powerful and thus popular. In this chapter, we have
presented the first study of independence for distributions over permuta-
tions from a Fourier-theoretic perspective. Our theoretical results show that
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(c) Running times vs. n — note that
we are able to scale the adaptive al-
gorithm to handle up to a hundred
objects while typical nonadaptive
Fourier approaches do not scale
very well past twenty.

Figure 27: Experimental results on biotracking data

distributions which factor independently must satisfy a certain structural
decomposition in the Fourier domain. From these structural insights, we
have formulated algorithms for joining and splitting distributions using
Fourier coefficients. Our algorithms can be integrated seamlessly into the
existing Fourier theoretic inference framework of Chapter 8 and are useful
additions to the growing ‘toolbox’ of Fourier theoretic operations that can
be performed on distributions over permutations. Combined with the ban-
dlimited approximate inference algorithms from these earlier papers, we
believe that our algorithms will contribute to making these Fourier based
methods highly scalable and practical.

Finally, we view our contributions as a first step towards understand-
ing and exploiting more intermediate notions of probabilistic indepen-
dence, which lie somewhere between full independence and fully con-
nected models, such as conditional or context-specific independence. In the
next chapters, we explore a novel notion of independence known as riffled
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independence which can be seen as a generalization of our work, which
is particularly relevant for ranked data. Conditional and context-specific
independence assumptions have proven themselves to be indispensible
in the fields of machine learning and AI, and we believe that generaliza-
tions of independence (such as the concept of riffled independence) will
be indispensible for performing learning and inference with permutation
data.
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B E Y O N D F U L L I N D E P E N D E N C E : R I F F L E D
I N D E P E N D E N C E F O R R A N K I N G S

IF full independence is often an unrealistic assumption for typical ma-
chine learning problems, it is even more egregious an assumption for

ranking problems due to the first-order condition discussed in the previ-
ous chapter. In this chapter, we propose a generalization of probabilistic
independence called riffled independence, which we show to be a much more
realistic assumption for ranked data.

Our generalization is similar in spirit to graphical models which use
another generalization (conditional independence) to capture a richer class
of distributions than that captured by simple naive Bayes models while
retaining many of the same computational advantages.

The contributions of this chapter can be summarized as follows:

• We introduce an intuitive generalization of independence on permu-
tations, which we call riffled independence, and show it to be a more
appropriate notion of independence for ranked data.

• We introduce a novel family of distributions, called biased riffle shuffles,
that are useful for riffled independence and propose an algorithm for
computing its Fourier transform.

• We provide an efficient recursive procedure for computing the Fourier
transform of the riffle shuffle distribution. Using this result, we devise
a method for teasing apart the riffle-independent components of a
distribution in the Fourier domain.

• We provide algorithms that can be used in the Fourier-theoretic frame-
work of [80, 60, 59] for joining riffle independent factors (RiffleJoin),
and for teasing apart the riffle independent factors from a joint
(RiffleSplit), and provide theoretical and empirical evidence that
our algorithms perform well.

• Finally, we show evidence that riffle independent relationships can
approximately hold in real datasets, justifying the use of our methods.

13.1 shortcomings of full independence

To scale to large problems, we have demonstrated in the previous chapter
that, by exploiting probabilistic independence, one can dramatically improve
the scalability of Fourier-based methods, e.g., for tracking problems, since
confusion in data association only occurs over small independent subgroups
of objects in many problems. Despite its utility for many tracking problems,
however, we argue that the first-order condition implied by independence

149
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Figure 28: Example first-order matrices with A = {1, 2, 3}, B = {4, 5, 6} fully inde-
pendent, where black means h(σ : σ(j) = i) = 0. In each case, there is
some 3-subset A ′ which A is constrained to map to with probability one.
With respect to some rearranging of the rows, independence imposes a
block-diagonal structure on first-order matrices.

imposes a rather harsh constraint on distributions, rendering independence
highly unrealistic in ranking applications. Recall that if σ(A) and σ(B) are
independent, then A and B are not allowed to map to the same ranks.
That is, for some fixed p-subset A ′ ⊂ {1, . . . ,n}, σ(A) is a permutation
of elements in A ′ and σ(B) is a permutation of its complement, B ′, with
probability 1. See Figure 28.

Example 74. Continuing with our vegetable/fruit example with n = 6, if the
vegetable and fruit rankings,

σA = [σ(Corn),σ(Peas)], and

σB = [σ(Lemons),σ(Oranges),σ(Figs),σ(Grapes)],

are known to be independent. Then for A ′ = {1, 2}, the vegetables occupy the first
and second ranks with probability one, and the fruits occupy ranks B ′ = {3, 4, 5, 6}
with probability one, reflecting that vegetables are always preferred over fruits
according to this distribution.

In sports tracking, permutations represent the mapping between the
identities of players with positions on the field, and in such settings, the
first-order condition might say, quite reasonably, that there is potential
identity confusion within tracks for the red team and within tracks for the
blue team but no confusion between the two teams. In our ranking example
however, the first-order condition forces the probability of any vegetable
being in third place to be zero, even though both vegetables will, in general,
have nonzero marginal probability of being in second place, which seems
quite unrealistic.

Example 75 (APA election data (continued)). Consider approximating the
APA vote distribution by a factorized distribution (as in Definition 63). In Fig-
ure 29, we plot (in solid purple) the factored distribution which is closest to the
true distribution with respect to total variation distance. In our approximation,
candidate 3 is constrained to be independent of the remaining four candidates and
maps to rank 1 with probability 1.

While capturing the fact that the “winner” of the election should be candidate 3,
the fully factored distribution can be seen to be a poor approximation, assigning
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Figure 29: Approximating the APA vote distribution by a factored distribution
in which candidate 3 is independent of candidates {1, 2, 4, 5}. (a) in
thick gray, the true distribution, in dotted purple, the approximate
distribution. Notice that the factored distribution assigns zero proba-
bility to most permutations. (b) matrix of first order marginals of the
approximating distribution.

zero probability to most permutations even if all permutations received a positive
number of votes. Since the support of the true distribution is not contained within
the support of the approximation, the KL divergence, DKL(htrue;happrox) is
infinite.

In the next section, we overcome the restrictive first-order condition with
the more flexible notion of riffled independence.

13.2 riffled independence: definitions and examples

The riffle (or dovetail) shuffle [11] is perhaps the most commonly used method
of card shuffling, in which one cuts a deck of n cards into two piles,
A = {1, . . . ,p} and B = {p+ 1, . . . ,n}, with size p and q = n− p, respec-
tively, and successively drops the cards, one by one, so that the two piles
become interleaved (see Figure 30a) into a single deck again. Inspired by
the riffle shuffle, we present a novel relaxation of the full independence
assumption, which we call riffled independence. Rankings that are riffle inde-
pendent are formed by independently selecting rankings for two disjoint
subsets of objects, then interleaving the two rankings using a riffle shuffle
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Figure 30: (a) Photograph of the riffle shuffle executed on a standard deck of cards;
(b) Pictorial example of a (2, 4)-interleaving distribution, with red cards
(offset to the left) denoting Vegetables, and blue cards (offset to the
right) denoting Fruits.

to form a final ranking over all objects. Intuitively, riffled independence
models complex relationships within each set A and B while allowing
correlations between the sets to be modeled only through a constrained
form of shuffling.

Example 76. Consider generating a ranking of vegetables and fruits. We might
first ‘cut the deck’ into two piles, a pile of vegetables (A) and a pile of fruits (B),
and in a first stage, independently decide how to rank each pile. For example,
within vegetables, we might decide that Peas are preferred to Corn: JP, CK =

JPeas,CornK. Similarly, within fruits, we might decide on the following ranking:
JL, F, G, OK = JLemons, Figs,Grapes,OrangesK (Lemons preferred over Figs,
Figs preferred over Grapes, Grapes preferred over Oranges).

In the second stage of our model, the fruit and vegetable rankings are interleaved
to form a full preference ranking over all six items. For example, if the interleaving
is given by: JVeg, Fruit, Fruit, Fruit,Veg, FruitK, then the resulting full ranking
is:

σ = JPeas,Lemons, Figs,Grapes,Corn,OrangesK.

13.2.1 Convolution based definition of riffled independence

There are two ways to define riffled independence, and, we will first pro-
vide a definition using convolutions, a view inspired by our card shuffling
intuitions. Mathematically, shuffles are modeled as random walks on the
symmetric group. The ranking σ ′ after a shuffle is generated from the rank-
ing prior to that shuffle, σ, by drawing a permutation, τ from an interleaving
distribution m(τ), and setting σ ′ = τσ (the composition of the mapping τ
with σ). Given the distribution h ′ over σ, we can find the distribution h(σ ′)
after the shuffle via the convolution formula (Equation 3.8):

h(σ ′) =
∑

σ,τ :σ ′=τσ

m(τ)h ′(σ).
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Besides the riffle shuffle, there are a number of different shuffling strate-
gies — the pairwise shuffle, for example, simply selects two cards at
random and swaps them. The question then, is what are interleaving shuffling
distributions m that correspond to riffle shuffles? To answer this question, we
use the distinguishing property of the riffle shuffle, that, after cutting the
deck into two piles of size p and q = n− p, it must preserve the relative
ranking relations within each pile. Thus, if the ith card appears above the
jth card in one of the piles, then after shuffling, the ith card remains above
the jth card. In our example, relative rank preservation says that if Peas
is preferred over Corn prior to shuffling, they continue to be preferred
over Corn after shuffling. Any allowable riffle shuffling distribution must
therefore assign zero probability to permutations which do not preserve
relative ranking relations. As it turns out, the set of permutations which do
preserve these relations have a simple description.

Definition 77 (Interleaving distributions). The (p,q)-interleavings are de-
fined as the following set:

ΞA,B ≡ {τ ∈ Sn : τ(1) < τ(2) < · · · < τ(p), and

τ(p+ 1) < τ(p+ 2) < · · · < τ(n)} .

A distribution mA,B on Sn is called an interleaving distribution if it assigns
nonzero probability only to elements in ΞA,B.

The (p,q)-interleavings can be shown to preserve relative ranking rela-
tions within each of the subsets A = {1, . . . ,p} and B = {p+ 1, . . . ,n} upon
multiplication:

Lemma 78. Let i, j ∈ A = {1, . . . ,p} (or i, j ∈ B = {p+ 1, . . . ,n}) and let τ
be any (p,q)-interleaving in ΞA,B. Then i < j if and only if τ(i) < τ(j) (i.e.,
permutations in ΞA,B preserve relative ranking relations).

Example 79. In our vegetable/fruits example, we have n = 6, p = 2 (two
vegetables, four fruits). The set of (2, 4)-interleavings is:

ΞVeg,Fruit =


[1 2 3 4 5 6], [1 3 2 4 5 6], [1 4 2 3 5 6], [1 5 2 3 4 6],

[1 6 2 3 4 5], [2 3 1 4 5 6], [2 4 1 3 5 6], [2 5 1 3 4 6],

[2 6 1 3 4 5], [3 4 1 2 5 6], [3 5 1 2 4 5], [3 6 1 2 4 5],

[4 5 1 2 3 6], [4 6 1 2 3 5], [5 6 1 2 3 4]

 ,

or written in ordering notation,

ΞVeg,Fruit =


JVVFFFFK, JVFVFFFK, JVFFVFFK, JVFFFVFK,

JVFFFFVK, JFVVFFFK, JFVFVFFK, JFVFFVFK,

JFVFFFVK, JFFVVFFK, JFFVFVFK, JFFVFFVK,

JFFFVVFK, JFFFVFVK, JFFFFVVK

 .

Note that the number of possible interleavings is |ΞVeg,Fruit| =
(
n
p

)
=
(
n
q

)
=

6!/(2!4!) = 15. One possible riffle shuffling distribution on S6 might, for example,
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assign uniform probability (munifVeg,Fruit(σ) = 1/15) to each permutation in
ΞVeg,Fruit and zero probability to everything else, reflecting indifference between
vegetables and fruits. Figure 30b is a graphical example of a (2, 4)-interleaving
distribution.

We now formally define our generalization of independence where a
distribution which fully factors independently is allowed to undergo a
single riffle shuffle.

Definition 80 (Riffled independence). The subsets A = {1, . . . ,p} and
B = {p+ 1, . . . ,n} are said to be riffle independent if

h = mp,q ∗ (fA(σ(A)) · gB(σ(B))),

with respect to some interleaving distributionmp,q and distributions fA,gB,
respectively. We will notate the riffled independence relation as A ⊥m B,
and refer to fA,gB as relative ranking factors.

Notice that without the additional convolution, the definition of riffled
independence reduces to the fully independent case given by Definition 63.

Example 81. Consider drawing a ranking from a riffle independent model. One
starts with two piles of cards, A and B, stacked together in a deck. In our fruit-
s/vegetables setting, if we always prefer vegetables to fruits, then the vegetables
occupy positions {1, 2} and the fruits occupy positions {3, 4, 5, 6}. In the first step,
rankings of each pile are drawn independent. For example, we might have the
rankings: σ(Veg) = [2 1] and σ(Fruit) = [4 6 5 3], constituting a draw from the
fully independent model described in Chapter 12. In the second stage, the deck of
cards is cut and interleaved by an independently selected element τ ∈ Ω2,4. For
example, if:

τ = [2 3 1 4 5 6] = JFruit,Veg,Veg, Fruit, Fruit, FruitK,

then the joint ranking is:

τ(σ(Veg),σ(Fruit)) = [2 3 1 4 5 6][2 1 4 6 5 3] = [3 2 4 6 5 1],

= JGrapes,Peas,Corn,Lemon, Fig,OrangeK.

13.2.2 Alternative definition of riffled independence

It is possible to rewrite the definition of riffled independence so that it does
not involve a convolution. We first define functions which map a given full
ranking to relative rankings and interleavings for A and B.

Definition 82.

• (Absolute ranks): Given a ranking σ ∈ Sn, and a subset A ⊂ {1, . . . ,n},
σ(A) denotes the absolute ranks of items in A.

• (Relative ranking map): Let φA(σ) denote the ranks of items in A

relative to the set A. For example, in the ranking σ = JP, L, F, G, C, OK,
the relative ranks of the vegetables is φA(σ) = JP, CK = JPeas,CornK.
Thus, while corn is ranked fifth in σ, it is ranked second in φA(σ).
Similarly, the relative ranks of the fruits is φB(σ) = JL, F, G, OK =

JLemons, Figs,Grapes,OrangesK.
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• (Interleaving map): Likewise, let τA,B(σ) denote the way in which
the sets A and B are interleaved by σ. For example, using the same
σ as above, the interleaving of vegetables and fruits is τA,B(σ) =

JVeg, Fruit, Fruit, Fruit,Veg, FruitK. In ranking notation (as opposed
to ordering notation), τA,B can be written as (sort[σ(A)), sort(σ(B))].
Note that for every possible interleaving, τ ∈ ΞA,B there are exactly
p!× q! distinct permutations which are associated to τ by the inter-
leaving map.

Sn

Sp

Sq
SpxSq

S
n
/(

S
p
xS

q
)

Figure 31: One way to think of
Sn is as a three dimen-
sional cube indexed by
three coordinates — rel-
ative rankings of A and
B, and the interleaving.

Using the above maps, the follow-
ing lemma provides an algebraic expres-
sion for how any permutation σ can be
uniquely decomposed into an interleav-
ing composed with relative rankings of
A and B, which have been “stacked” into
one deck.

Lemma 83. Let A = {1, . . . ,p}, and B =

{p + 1, . . . ,n}. Any ranking σ ∈ Sn can
be decomposed uniquely as an interleaving
τ ∈ ΞA,B composed with a ranking of the
form [πp πq + p] (using one-line notation),
where πp ∈ Sp, πq ∈ Sq, and πq + p means
that the number p is added to every rank in
πq. Specifically, σ = τ[πp πq + p] with τ =
τA,B(σ), πp = φA(σ), and πq = φB(σ).

Proof. Let i be an item in A (with 1 6
i 6 p). Since φA(σ) ∈ Sp, [φA(σ)](i) is
some number between 1 and p. By definition, for any j ∈ {1, . . . ,p} the
interleaving map [τA,B(σ)](j) returns the jth largest rank in σ(A). Thus,
[τA,B(σ)](φA(i)) is the φA(i)-th largest rank in σ(A), which is simply the
absolute rank of item i. Therefore, we conclude that σ(i) = [τA,B(σ)](φA(i)).
Similarly, if p+ 1 6 i 6 n, we have σ(i) = [τA,B(σ)](φB(i) + p) (the added
p is necessary since the indices of B are offset by p in σ), and we can
conclude that σ = τA,B(σ)[φA(σ)φB(σ)].

Lemma 83 shows that one can think of a triplet (τ ∈ ΞA,B,σp ∈ Sp,σq ∈
Sq) as being coordinates which uniquely specify any ranking of items inA∪
B (see Figure 31 for an illustration). Using the decomposition, we can now
state a second, perhaps more intuitive, definition of riffled independence in
terms of the relative ranking and interleaving maps.

Definition 84. Sets A and B are said to be riffle independent if and only if,
for every σ ∈ Sn, the joint distribution h factors as:

h(σ) = m(τA,B(σ)) · fA(φA(σ)) · gB(φB(σ)). (13.1)

Proposition 85. Definitions 80 and 84 are equivalent.
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Proof. Assume that A = {1, . . . ,p} and B = {p+ 1, . . . ,n} are riffle indepen-
dent with respect to Definition 80. We will show that Definition 84 is also
satisfied (the opposite direction will be similar). Therefore, we assume that
h = mA,B ∗ (fA(σ(A)) · gB(σ(B))). Note that f(σA) · g(σB) is supported on
the subgroup Sp × Sq ≡ {σ ∈ Sn : 1 6 σ(i) 6 p, whenever 1 6 i 6 p}.

Let σ = (σ(A),σ(B)) be any ranking. We will need to use a simple claim:
consider the ranking τ−1σ (where τ ∈ Ωp,q). Then τ−1σ is an element of
the subgroup Sp × Sq if and only if τ = τA,B(σ).

[mA,B ∗ (fA · gB)](σ) =
∑
σ ′∈Sn

mA,B(σ
′) · [fA ·B](σ ′−1σ),

=
∑
τ∈ΞA,B

mA,B(τ) · [fA · gB](τ−1σ),

(since mA,B is supported on ΞA,B)

= mA,B(τA,B(σ)) · [fA · gB]((τ−1A,B(σ))σ),

(by the claim above and since fA · gB
is supported on Sp × Sq)

= mA,B(τA,B(σ)) · [fA · gB](φA(σ),φB(σ)),
(by Lemma 83)

= mA,B(τA,B(σ)) · fA(φA(σ)) · gB(φB(σ)).
(by independence of fA · gB)

Thus, we have shown that Definition 84 has been satisfied as well.

13.2.3 Discussion

We have presented two ways of thinking about riffled independence. Our
first formulation, in terms of convolution, is motivated by the connections
between riffled independence and card shuffling theory. As we show in
Section 13.4, the convolution based view is also crucial for working with
Fourier coefficients of riffle independent distributions and analyzing the
theoretical properties of riffled independence. Our second formulation on
the other hand, shows the concept of riffled independence to be remarkably
simple — that the probability of a single ranking can be computed without
summing over all rankings (required in convolution) — a fact which may
not have been obvious from Definition 80.

Finally, for interested readers, the concept of riffled independence also
has a simple and natural group theoretic description. By a fully factorized
distribution, we refer to a distribution supported on the subgroup Sp × Sq,
which factors along the Sp and Sq “dimensions”. As we have discussed,
such sparse distributions are not appropriate for ranking applications, and
one would like to work with distributions capable of placing nonzero
probability mass on all rankings. In the case of the symmetric group,
however, there is a third “missing dimension” — the coset space, Sn/(Sp ×
Sq). Thus, the natural extension of full independence is to randomize over
a set of coset representatives of Sp × Sq, what we have referred to in the
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above discussion as interleavings (see also Chapter 2). The draws from each
set, Sp, Sq, and Sn/(Sp × Sq) are then independent in the ordinary sense,
and we say that the item sets A and B are riffle independent.

special cases. There are a number of special case distributions cap-
tured by the riffled independence model that are useful for honing intuition.
We discuss these extreme cases in the following list.

• (Uniform and delta distributions): Setting the interleaving distribution
and both relative ranking factors to be uniform distributions yields the
uniform distribution over all full rankings. Similarly, setting the same
distributions to be delta distributions (which assign zero probability
to all rankings but one) always yields a delta distribution.

It is interesting to note that while A and B are always fully indepen-
dent under a delta distribution, they are never independent under
a uniform distribution. However, both uniform and delta distribu-
tions factor riffle independently with respect to any partitioning of
the item set. Thus, not only is A = {1, . . . ,p} riffle independent
B = {p + 1, . . . ,n}, but in fact, any set A is riffle independent of
its complement.

• (Uniform interleaving distributions): Setting the interleaving distribution
to be uniform, as we will discuss more in detail later, reflects complete
indifference between the sets A and B, even if fA and gB encode
complex preferences within each set alone.

• (Uniform relative ranking factors): Setting the relative ranking factors,
fA and gB to be uniform distributions means that with respect to
the joint distribution h, all items in A are completely interchangeable
amongst each other (as are all items in B).

• (Delta interleaving distributions): Setting the interleaving distribution,
mA,B, to be a delta distribution on any of the (p,q)-interleavings in
ΞA,B recovers the definition of ordinary probabilistic independence,
and thus riffled independence is a strict generalization thereof (see
Figure 28). Just as in the full independence regime, where the distri-
butions fA and gB are marginal distributions of absolute rankings
of A and B, in the riffled independence regime, fA and gB can be
thought of as marginal distributions of the relative rankings of item
sets A and B.

• (Delta relative ranking factor): On the other hand, if one of the rel-
ative ranking factors, say fA, is a delta distribution and the other
two distributions mA,B and gB are uniform, then the resulting riffle
independent distribution h can be thought of as an indicator func-
tion for the set of rankings that are consistent with one particular
incomplete ranking (in which only the relative ranking of A has been
specified). Such distributions can be useful in practice when the input
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Figure 32: Approximating the APA vote distribution by riffle independent distri-
butions. (a) approximate distribution when candidate 2 is riffle inde-
pendent of remaining candidates; (b) approximate distribution when
candidate 3 is riffle independent of remaining candidates; (c) and (d)
corresponding first order marginals of each approximate distribution.

data comes in the form of incomplete rankings rather than full rank-
ings. See Kondor and Barbosa [81] who use a similar factorization for
efficiently computing kernel evaluations between partial rankings.

Example 86 (APA election data (continued)). Like the independence assump-
tions commonly used in naive Bayes models, we would rarely expect riffled in-
dependence to exactly hold in real data. Instead, it is more appropriate to view
riffled independence assumptions as a form of model bias that ensures learnability
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Algorithm 13.1: Recurrence for drawing σ ∼ munifp,q (Base case: return σ = [1] if
n = 1).

DrawRiffleUnif(p,q,n) //(p+ q = n)

with probability q/n //drop from right pile

σ− ← DrawRiffleUnif(p,q− 1,n− 1) ;

foreach i do σ(i)←

{
σ−(i) if i < n

n if i = n
;

endif
otherwise //drop from left pile

σ− ← DrawRiffleUnif(p− 1,q,n− 1) ;

foreach i do σ(i)←


σ−(i) if i < p

n if i = p

σ−(i− 1) if i > p

;

endif
return (σ) ;

for small sample sizes, which as we have indicated, is almost always the case for
distributions over rankings.

Can we ever expect riffled independence to be manifested in a real dataset?
In Figure 32a, we plot (in dotted red) a riffle independent approximation to the
true APA vote distribution (in thick gray) which is optimal with respect to KL-
divergence (we will explain how to obtain the approximation in the remainder of
the chapter). The approximation in Figure 32a is obtained by assuming that the
candidate set {1, 3, 4, 5} is riffle independent of {2}, and as can be seen, is quite
accurate compared to the truth (with the KL-divergence from the true to the factored
distribution being dKL = .0398). Figure 32c exhibits the first order marginals of
the approximating distribution, which can also visually be seen to be a faithful
approximation (see Figure 10b for the empirical first-order matrix of marginals).
We will discuss the interpretation of the result further in Chapter 14.

For comparison, we also display (in Figures 32b and 32d) the result of approx-
imating the true distribution by one in which candidate {3}, the winner, is riffle
independent of the remaining candidate. The resulting approximation is inferior,
and the lesson to be learned in the example is that finding the correct/optimal
partitioning of the item set is important in practice. We remark however, that the
approximation obtained by factoring out candidate 3 is not a terrible approximation
(especially on examining first order marginals), and that both approximations are
far more accurate than the fully independent approximation showed earlier in
Figure 29. The KL divergence from the true distribution to the factored distribution
(with candidate 3 riffle independent of the remaining candidates) is dKL = .0841.

13.3 interleaving distributions

There is, in the general case, a significant increase in storage required for
riffled independence over full independence. In addition to the O(p! + q!)
storage required for distributions f and g, we now require O(

(
n
p

)
) storage
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for the nonzero terms of the riffle shuffling distribution mA,B. In this
thesis we will primarily consider models with small p (p ∼ O(1)), in which
case the number of model parameters scales polynomially in n. In this
section, however, we consider a family of useful riffle shuffling distributions
which can be described using only a handful of parameters. The simplest
riffle shuffling distribution is the uniform riffle shuffle, munifA,B , which assigns
uniform probability to all (p,q)-interleavings and zero probability to all
other elements in Sn. Used in the context of riffled independence, munifA,B
models potentially complex relations within A and B, but only captures
the simplest possible correlations across subsets. We might, for example,
have complex preference relations amongst vegetables and amongst fruits,
but be completely indifferent with respect to the subsets, vegetables and
fruits, as a whole.

There is a simple recursive method for drawing (p,q)-interleavings from
a uniform distribution. Starting with a deck of n cards cut into a left
pile ({1, . . . ,p}) and a right pile ({p+ 1, . . . ,n}), pick one of the piles with
probability proportional to its size (p/n for the left pile, q/n for the right)
and drop the bottommost card, thus mapping either card p or card n to
rank n. Then recurse on the n− 1 remaining undropped cards, drawing a
(p−1,q)-interleaving if the right pile was picked, or a (p,q−1)-interleaving
if the left pile was picked. See Algorithm 13.1. We have the following:

Theorem 87. Algorithm 13.1 returns a uniformly distributed (p,q)-interleaving.

Proof. The proof is by induction on n = p+ q. The base case (when n = 1)
is obvious since the algorithm can only return a single permutation.

Next, we assume for the sake of induction that for any m < n, the
algorithm returns a uniformly distributed interleaving and we want to
show this to also be the case for n.

Let τ be any interleaving in ΞA,B. We will show that m(τ) = 1/
(
n
p

)
.

Consider τ− = τ−1(1 : n− 1) ∈ Sn−1. There are two cases: τ−1 is either a
(p,q− 1)-interleaving (in which case τ(n) = n), or a (p− 1,q)-interleaving
(in which case τ(p) = n).

We will just consider the first case since the second is similar. τ−1 is uni-
formly distributed by the inductive hypothesis and therefore has probability
1/
(
n−1
p

)
.

τ−1(n) is set to n independently with probability q/n, so we compute
the probability of the interleaving resulting from the algorithm as:

n− p

n
· 1(
n−1
p

) =
n− p

n
· p!(n− 1− p)!

(n− 1)!
=
p!(n− p)!

n!
=

1(
n
p

) .

It is natural to consider generalizations where one is preferentially bi-
ased towards dropping cards from the left hand over the right hand (or
vice-versa). We model this bias using a simple one-parameter family of
distributions in which cards from the left and right piles drop with prob-
ability proportional to αp and (1− α)q, respectively, instead of p and q.
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(b) α = 1/6
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(c) α = 1/3
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(d) α = 1/2
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(e) α = 2/3
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(f) α = 5/6
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Figure 33: First-order matrices with a deck of 20 cards, A = {1, . . . , 10}, B =

{11, . . . , 20}, riffle independent and various settings of α. Compare these
matrices to the fully independent first order marginal matrices of Fig-
ure 28 and note that here, the nonzero blocks are allowed to ‘bleed’ into
zero regions. Setting α = 0 or 1, however, recovers the fully indepen-
dent case, where a subset of objects is preferred over the other with
probability one.

We will refer to α as the bias parameter, and the family of distributions
parameterized by α as the biased riffle shuffles.1

In the context of rankings, biased riffle shuffles provide a simple model
for expressing groupwise preferences (or indifference) for an entire subset
A over B or vice-versa. The bias parameter α can be thought of as a knob
controlling the preference for one subset over the other, and might reflect,
for example, a preference for fruits over vegetables, or perhaps indifference
between the two subsets. Setting α = 0 or 1 recovers the full independence
assumption, preferring objects in A (vegetables) over objects in B (fruits)
with probability one (or vice-versa), and setting α = .5, recovers the uniform
riffle shuffle (see Figure 33). Finally, there are a number of straightforward
generalizations of the biased riffle shuffle that one can use to realize richer

1 The recurrence in Algorithm 13.1 has appeared in various forms in literature [11]. We are
the first to (1) use the recurrence to Fourier transform mp,q, and to (2) consider biased
versions. The biased riffle shuffles in [41] are not similar to our biased riffle shuffles.
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162 beyond full independence : riffled independence for rankings

distributions. For example, α might depend on the number of cards that
have been dropped from each pile (allowing perhaps, for distributions to
prefer crunchy fruits over crunchy vegetables, but soft vegetables over soft
fruits).

13.3.1 Fourier transforming the biased riffle shuffle

We now use the recursive generative procedure to compute the Fourier
transform of munifA,B . To make the dependence on p and q explicit for
the purposes of this section, we will write munifp,q instead of munifA,B for
A = {1, . . . ,p}, and B = {p+ 1, . . . ,p+ q}. We now describe the recurrence
satisfied by munifp,q , allowing one to write munifp,q , a distribution on Sn, in
terms of munifp,q−1 and munifp−1,q, distributions over Sn−1, using Embed and
Shift operations. Algorithm 13.1 can be then rephrased as a recurrence
relation as follows.

Proposition 88. The uniform riffle shuffling distribution munifp,q obeys the recur-
rence relation:

munifp,q =

[(
p

p+ q

)
· Shift[Embed[munifp−1,q], (p+ 1, . . . ,n)

−1, ε]
]
+

[(
q

p+ q

)
· Embed[munifp,q−1]

]
,

(13.2)

with base cases: munif0,n = munifn,0 = δε, where δε is the delta function at the
identity permutation.

Note that by taking the support sizes of each of the functions in the above
recurrence, we recover the following well known recurrence for binomial
coefficients:(

n

p

)
=

(
n− 1

p− 1

)
+

(
n− 1

p

)
, with base case

(
n

0

)
=

(
n

n

)
= 1. (13.3)

The biased riffle shuffle is defined by:

mαp,q ∝
[(

αp

p+ q

)
· Shift[Embed[mαp−1,q], (p+ 1, . . . ,n)

−1, ε]
]

+

[(
(1−α)q

p+ q

)
· Embed[mαp,q−1]

]
, (13.4)

Writing the recursion in the form of Equation 13.2 provides a construc-
tion of the uniform riffle shuffle as a sequence of operations on smaller
distribution which can be performed completely with respect to Fourier
coefficients. Using linearity of Fourier transforms, the convolution theo-
rem (Proposition 51 and the fact that embeddings can be performed in
the Fourier domain (Algorithm 6.4), we arrive at the equivalent Fourier-
theoretic recurrence for each frequency level i.

{ ̂munifp ,q
ρ
}ρ∈Λn =

(
p

p+ q

)
· Shift[Embed[{m̂unifp−1,qρ

}ρ∈Λn−1
], (p+ 1, . . . ,n)−, ε]

+

(
q

p+ q

)
· Embed[{m̂unifp,q−1ρ

}ρ∈Λn−1
]. (13.5)
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Algorithm 13.2: Pseudocode for computing the Fourier transform of the uniform
riffle shuffling distribution using dynamic programming. Input: Integers p and q.
Output: The Fourier coefficient matrices of {m̂ρ}ρ∈Λn , where m ≡ munifA,B .

RiffleHat(p,q):
n← p+ q ;
Initialize m̂prev, m̂curr as arrays of p+ 1 Fourier transform data structures ;
for i = 1, 2, ...,n do

for j = max(0,p−n+ i), . . . , min(i,p) do
if j == 0 or j == i then

m̂curr[j]← δ̂ε∈Si ;
end
else

m̂curr[j]←
(
i−j
i

)
Embed(m̂prev[j], i− 1, i)

+
(
i
j

)
Convolve(Embed(m̂prev[j− 1], i− 1, i), δ̂(i,i−1,...,j));

end
m̂prev ← m̂curr ;

end
end
return (m̂curr[p]);

n=0

n=1

n=2

n=3

n=4

Figure 34: The flow of information in Algorithm 13.2 bears much resemblance
to Pascal’s triangle for computing binomial coefficients. The arrows in
this diagram indicate the Fourier transforms that must be precomputed
before computing the Fourier transform of a larger interleaving distri-
bution. For example, to compute m̂1,2, one must first compute m̂1,1
and m̂0,2. m̂1,1 and m̂0,2 in turn require m̂1,0 and m̂0,1. In blue, we
have highlighted the collection of Fourier transforms that are computed
by Algorithm 13.2 while computing m̂1,3

Implementing the recurrence (Equation 13.5) in code can naively result
in an exponential time algorithm if one is not careful. It is necessary to use
dynamic programming to be sure not to recompute things that were already
computed. In Algorithm 13.2, we present pseudocode of such a dynamic
programming approach, which builds a ‘Pascal’s triangle’ similar to that
which might be constructed to compute a table of binomial coefficients.
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The pseudocode assumes the existence of Fourier domain algorithms for
convolving distributions and for embedding a distribution over Sn−1 into
Sn. See Figure 34 for a graphical illustration of the algorithm. Note that a
simple modification of the scalar constants in Algorithm 13.2 allows us to
compute the Fourier transform of the biased riffle shuffle as well.

13.4 algorithms for a fixed partitioning of the item set

We have thus far covered a number of intuitive examples and properties of
riffled independence. Given a set of rankings drawn from some distribution
h, we are now interested in estimating a number of statistical quantities,
such as the parameters of a riffle independent model. In this section, we
will assume a known structure (that the partitioning of the item set into
subsets A and B is known), and given such a partitioning of the item set,
we are interested in the problem of estimating parameters (which we will
refer to as RiffleSplit), and the inverse problem of computing probabilities
(or marginal probabilities) with given parameters (which we will refer to
as RiffleJoin).

rifflesplit . In RiffleSplit (which we will also refer to as the parameter es-
timation problem), we would like to estimate various statistics of the relative
ranking and interleaving distributions of a riffle independent distribution
(mA,B, fA, and gB). Given a set of i.i.d. training examples, σ(1), . . . ,σ(m),
we might, for example, want to estimate each raw probability (e.g., esti-
mate mA,B(τ) for each interleaving τ). In general, we may be interested in
estimating more general statistics (e.g., what are the second order relative
ranking probabilities of the set of fruits?).

Since our variables are discrete, computing the maximum likelihood
parameter estimates consists of forming counts of the number of training
examples consistent with a given interleaving or relative ranking. Thus,
the MLE parameters in our problem are simply given by the following
formulas:

mMLEA,B (τ) ∝
m∑
i=1

1
[
τ = τA,B(σ

(i))
]

, (13.6)

fMLEA (σA) ∝
m∑
i=1

1
[
σA = φA(σ

(i))
]

, (13.7)

gMLEB (σB) ∝
m∑
i=1

1
[
σB = φB(σ

(i))
]

. (13.8)

rifflejoin . Having estimated parameters of a riffle independent dis-
tribution, we would like to now compute various statistics of the data
itself. In the simplest case, we are interested in estimating h(σ), the joint
probability of a single ranking, which can be evaluated simply by plugging
parameter estimates of mp,q, fA, and gB into our second definition of
riffled independence (Definition 84).
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Algorithm 13.3: Pseudocode for RiffleJoin in the Fourier domain. Input:
Fourier transforms of fA, gB, and mA,B ({f̂ρ}ρ∈Λp , {ĝρ}ρ∈Λq , and {m̂ρ}ρ∈Λn
respectively). Output: Fourier transform of the joint distribution, {ĥρ}ρ∈Λn .

RiffleJoin({f̂ρ}ρ∈Λp , {ĝρ}ρ∈Λq , {m̂ρ}ρ∈Λn )

{ĥ ′ρ}ρ∈Λn = Join[{f̂ρ}ρ∈Λp , {ĝρ}ρ∈Λq ] ;
foreach partition λ of n do

ĥρλ ← m̂ρλ · ĥ ′ρλ ;
end
return

(
{ĥρ}ρ∈Λ

)
;

More generally however, we may be interested in knowing the low-order
statistics of the data (e.g., the first order marginals, second order marginals,
etc.), or related statistics (such as h(σ(i) < σ(j)), the probability that object i
is preferred to object j). And typically for such low-order statistics, one must
compute a sum over rankings. For example, to compute the probability
that item j is ranked in position i, one must sum over (n− 1)! rankings:

h(σ : σ(j) = i) =
∑

σ :σ(j)=i

mA,B(τA,B(σ)) · (fA(φA(σ)) ·gB(φB(σ))). (13.9)

While Equation 13.9 may be feasible for small n (such as on the APA
dataset), the sum quickly grows to be intractable for larger n. One of
the main observations of the remainder of this section, however, is that
low-order marginal probabilities of the joint distribution can always be com-
puted directly from low-order marginal probabilities of the relative ranking
and interleaving distributions without explicitly computing intractable
sums.

13.4.1 Fourier theoretic algorithms for riffled independence

We now present algorithms for working with riffled independence (solving
the RiffleSplit and RiffleJoin problems) in the Fourier theoretic framework
of Chapter 8. The Fourier theoretic perspective of riffled independence
presented here is valuable because it will allow us to work directly with
low-order statistics instead of having to form the necessary raw probabilities
first. Note that readers who are primarily interested in the structure learning
can jump directly to Chapter 14.

In this section, we provide generalizations of the algorithms Chapter 12

that tackle the RiffleJoin and RiffleSplit problems. We will assume, without
loss of generality that A = {1, . . . ,p} and B = {p+ 1, . . . ,n} (this assumption
will be discarded in later sections), Although we begin each of the following
discussions as if all of the Fourier coefficients are provided, we will be
especially interested in algorithms that work well in cases where only
a truncated set of Fourier coefficients are present, and where h is only
approximately riffle independent.
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Algorithm 13.4: Pseudocode for RiffleSplit in the Fourier domain. Input:
Fourier transform of the empirical joint distribution, {ĥρ}ρ∈Λn . Output: Fourier
transform of MLE estimates of fA, gB ({f̂ρ}ρ∈Λp , {ĝρ}ρ∈Λq ).

RiffleSplit({ĥρ}ρ∈Λn )

foreach partition λ of n do

ĥ ′ρλ ←
[
m̂unifA,B

]T
ρλ
· ĥρλ ;

end
[{f̂ρ}ρ∈Λp , {ĝρ}ρ∈Λq ] ← Split(ĥ ′) ;

Normalize

(
{f̂ρ}ρ∈Λp

)
;

Normalize

(
{ĝρ}ρ∈Λq

)
;

return
(
{f̂ρ}ρ∈Λp , {ĝρ}ρ∈Λq

)
;

13.4.2 RiffleJoin in the Fourier domain

Given the Fourier coefficients of fA, gB, and mA,B, we can compute the
Fourier coefficients of h using Definition 80 (our first definition) by apply-
ing Join (Algorithm 12.1) and the convolution theorem (Proposition 51),
which tells us that the Fourier transform of a convolution can be writ-
ten as a pointwise product of Fourier transforms. To compute the ĥρλ ,
the Fourier theoretic formulation of the RiffleJoin algorithm simply calls
the Join algorithm on {f̂ρ}ρ∈Λp and {ĝρ}ρ∈Λq , and convolves the result by
{m̂ρ}ρ∈Λn , where we have dropped the A and B subscripts for succinctness
(see Algorithm 13.3).

In general, it may be intractable to Fourier transform the riffle shuffling
distributionm. However, there are some cases in whichm can be computed.
For example, if m is computed directly from a set of training examples,
then one can simply compute the desired Fourier coefficients using the
definition of the Fourier transform (i.e., the direct construction of Chapter 7).
For the class of biased riffle shuffles that we discussed in Section 13.2, we
have also shown an algorithm (Algorithm 13.2) for efficiently computing
the low-frequency terms of m̂αA,B by employing the recurrence relation in
Algorithm 13.1.

13.4.3 RiffleSplit in the Fourier domain

Given the Fourier coefficients of a riffle independent distribution h, we
would like to tease apart the factors. In the following, we show how to
recover the relative ranking distributions, fA and gB, and defer the problem
of recovering the interleaving distribution for Appendix 13.3.1.

From the RiffleJoin algorithm, we saw that for each partition λ, ĥρλ =
m̂ρλ · [f̂ · g]ρλ . The first solution to the splitting problem that might occur
is to perform a deconvolution by multiplying each ĥλ term by the inverse
of the matrix m̂ρλ (to form m̂−1

ρλ
· ĥρλ) and call Split (Algorithm 12.2) on

the result. Unfortunately, the matrix m̂ρλ is, in general, non-invertible. In-
stead, our RiffleSplit algorithm left-multiplies each ĥρλ term by [m̂unifA,B ]Tρλ ,
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which can be shown to be equivalent to convolving the distribution h by
the ‘dual shuffle’, m∗, defined as

m∗(σ) = munifA,B (σ−1).

While convolving by m∗ does not produce a distribution that factors in-
dependently, the Split algorithm can still be shown to recover the Fourier

transforms {f̂MLEA ρ
}ρ∈Λp and {ĝMLEB ρ

}ρ∈Λq of the maximum likelihood
parameter estimates:

Theorem 89. Given a set of rankings with empirical distribution h̃, the maximum
likelihood estimates of the relative ranking distributions over item sets A and B are
given by:

[fMLEA ,gMLEB ] ∝ Split

[
m∗p,q ∗ h̃

]
, (13.10)

where m∗p,q is the dual shuffle (of the uniform interleaving distribution). Further-
more, the Fourier transforms of the relative ranking distributions are:[

{f̂MLEρ}ρ∈Λp , {ĝMLEρ}ρ∈Λq
]
∝ Split

[{(
m̂unifA,B

)T
ρλ
· ˆ̃hρλ

}
λ∈Λn

]
.

Proof. We will use πp ∈ Sp and πq ∈ Sq to denote relative rankings of
A and B respectively. Let us consider estimating fMLEA (πp). If h̃ is the
empirical distribution of the training examples, then fMLEA (πp) can be
computed by summing over examples in which the relative ranking of A
is consistent with πp (Equation 13.7), or equivalently, by marginalizing h̃
over the interleavings and the relative rankings of B. Thus, we have:

fMLEA (πp) =
∑
πq∈Sq

 ∑
τ∈ΞA,B

h̃(τ[πp,πq + p])

 , (13.11)

where we have used Lemma 83 to decompose a ranking σ into its compo-
nent relative rankings and interleaving.

The second step is to notice that the outer summation of Equation 13.11 is
exactly the type of marginalization that can already be done in the Fourier
domain via the Split algorithm of [60], and thus, fMLEA can be rewritten
as fMLEA = Split(h ′), where the function h ′ : Sn → R is defined as
h ′(σ) =

∑
τ∈ΞA,B

h(τσ). Hence, if we could compute the Fourier transform
of the function h ′, then we could apply the ordinary Split algorithm to
recover the Fourier transform of fMLEA .

In the third step, we observe that the function h ′ can be written as a
convolution of the dual shuffle with h, thus establishing the first part of
the theorem:

h ′(σ) =
∑
τ∈ΞA,B

h(τσ),

∝
∑
π∈Sn

munifA,B (π)h(πσ),

∝
∑
π∈Sn

m∗A,B(π)h(π
−1σ),

∝ [m∗A,B ∗ h](σ).
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Next, we use a standard fact about Fourier transforms [29] — given a
function m∗ : Sn → R defined as m∗(σ) = m(σ−1), the Fourier coeffi-
cient matrices of m∗ are related to those of m by the transpose. Hence,
m̂∗

T
ρλ

= m̂ρλ , for every partition λ of n. Applying the convolution theo-
rem (Proposition 51) to the Fourier coefficients of the dual shuffle and the
empirical distribution establishes the final part of the theorem.

Notice that to compute the MLE relative ranking factors in the Fourier
domain, it is not necessary to know the interleaving distribution. It is
necessary, however, to compute the Fourier coefficients of the uniform
interleaving distribution (munifp,q ), which we have discussed in the previous
section. It is also necessary to normalize the output of Split to sum to one,
which we accomplish again by dividing each Fourier coefficient matrix by[
m̂unifp,q

]
(n)

(Equation 8.1). See Algorithm 13.4 for pseudocode.

13.4.4 Marginal preservation

Typically, in the Fourier setting, one hopes instead to work with a set of
low-order terms. For example, in the case of RiffleJoin, we might only
receive the second order marginals of the parameter distributions as input.
A natural question to ask then, is what is the approximation quality of
the output given a bandlimited input? We now state a result below, which
shows how our algorithms perform when called with a truncated set of
Fourier coefficients.

Theorem 90. Let A and B be riffle independent sets with joint distribution h.
Given enough Fourier terms to reconstruct the kth-order marginals of fA and
gB, RiffleJoin returns enough Fourier terms to exactly reconstruct the kth-order
marginals of h. Likewise, given enough Fourier terms to reconstruct the kth-order
marginals of h, RiffleSplit returns enough Fourier terms to exactly reconstruct
the kth-order marginals of both fA and gB.

Proof. This result is a simple consequence of the convolution theorem
(Proposition 51) and the marginal preservation guarantees of the previous
chapter. Theorem 68 states that, given sth-order marginals of factors f and
g, the Join algorithm can reconstruct the sth-order marginals of the joint
distribution f · g, exactly. Since the riffle independent joint distribution is
m ∗ (f · g) and convolution operations are pointwise in the Fourier domain
(Proposition 51), then given enough Fourier terms to reconstruct the sth-
order marginals of the function mp,q, we can also reconstruct the sth-order
marginals of the riffle independent joint from the output of RiffleSplit.

13.4.5 Running time

If the Fourier coefficient matrix for frequency level λ of a joint distribution
is dλ × dλ then the running time complexity of the Join/Split algorithms
of the previous chapter are at worst, cubic in the dimension, O(d3λ). If the
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Figure 35: Synthetic data experiments for a single partitioning of the item set

interleaving Fourier coefficients are precomputed ahead of time, then the
complexity of RiffleJoin/RiffleSplit is also O(d3λ).

If not, then we must Fourier transform the interleaving distribution. For
RiffleJoin, we can Fourier transform the empirical distribution directly
from the definition, or use the algorithms presented in Section 13.3.1 in
the case of biased riffle shuffles, which has O(n2d3λ) running time in the
worst case when p ∼ O(n). For RiffleSplit, one must compute the Fourier
transform of the uniform interleaving distribution, which, as we have
shown in Section 13.3, also takes the form of a biased riffle shuffle and
therefore also can be computed in O(n2d3λ) time. In Section 9.4, we plot
experimental running times.

13.5 experiments

In this section, we present experiments to validate our models and meth-
ods. All experiments were implemented in Matlab, except for the Fourier
theoretic routines, which were written in C++. We tested on lab machines
with two AMD quadcore Opteron 2.7GHz processors with 32 Gb memory.

13.5.1 Simulated data

We begin with a discussion of our simulated data experiments. We first con-
sider approximation quality and timing issues for a single binary partition
of the item set.

To understand the behavior of RiffleSplit in approximately riffle inde-
pendent situations, we drew sample sets of varying sizes from a riffle
independent distribution on S8 (with bias parameter α = .25) and use Rif-
fleSplit to estimate the relative ranking factors and interleaving distribution
from the empirical distribution. In Figure 35a, we plot the KL-divergence
between the true distribution and that obtained by applying RiffleJoin to the
estimated riffle factors. With small sample sizes (far less than 8! = 40320),
we are able to recover accurate approximations despite the fact that the
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1. ebi (shrimp) 2. anago (sea eel) 3. maguro (tuna)

4. ika (squid) 5. uni (sea urchin) 6. sake (salmon roe)

7. tamago (egg) 8. toro (fatty tuna) 9. tekka-maki (tuna roll)

10. kappa-maki (cucumber roll)

Figure 36: List of sushi types in the [70] dataset
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Figure 37: Sushi preference ranking experiments

empirical distributions are not exactly riffle independent. For compari-
son, we ran the experiment using the Split algorithm [60] to recover the
parameters. Perhaps surprisingly, one can show that the Split algorithm
from [60] is also an unbiased, consistent estimator of the riffle factors, but
it does not return the maximum likelihood parameter estimates because
it effectively ignores rankings which are not contained in the subgroup
Sp × Sq. Consequently, our RiffleSplit algorithm converges to the correct
parameters with far fewer samples.

Next, we show that our Fourier domain algorithms are capable of han-
dling sizeable item sets (with size n) when working with low-order terms.
In Figure 35b we ran our Fourier domain RiffleJoin algorithm on vari-
ous simulated distributions. We plot running times of RiffleJoin (without
precomputing the interleaving distributions) as a function of n (setting
p = dn/2e, which is the worst case) scaling up to n = 40.

13.5.2 Sushi preference data

We now turn to analyzing real datasets. For our first analysis, we examine a
sushi preference ranking dataset [70] consisting of 5000 full rankings of ten
types of sushi. The items are enumerated in Figure 36. Note that, compared
to the APA election data, the sushi dataset has twice as many items, but
fewer examples.

We begin by studying our methods in the case of a single binary parti-
tioning of the item set. Unlike the APA dataset, there is no obvious way
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to naturally partition the types of sushi into two sets — in our first set of
experiments, we have arbitrarily divided the item set into A = {1, . . . , 5} and
B = {6, . . . , 10}. In the next chapter, we consider more principled approaches
for partitioning the item set.

We divided the data into training and test sets (with 500 examples) and
estimated the true distribution in three ways: (1) directly from samples
(with regularization), (2) using a riffle independent distribution (split evenly
into two groups of five and mentioned above) with the optimal shuffling
distribution m, and (3) with a biased riffle shuffle (and optimized bias α).
Figure 37a plots testset log-likelihood as a function of training set size —
we see that riffle independence assumptions can help significantly to lower
the sample complexity of learning. Biased riffle shuffles, as can also be seen,
are a useful learning bias with very small samples.

As an illustration of the behavior of biased riffle shuffles, see Figure 37b
which shows the approximate first-order marginals of Uni (Sea Urchin)
rankings, and the biased riffle approximation. The Uni marginals are inter-
esting, because while many people like Uni, thus providing high rankings,
many people also hate it, providing low rankings. The first-order marginal
estimates have significant variance at low sample sizes, but with the bi-
ased riffle approximation, one can achieve a reasonable approximation
to the distribution even with few samples at the cost of being somewhat
oversmoothed.

13.6 conclusions

In summary, we have introduced riffled independence as a novel generaliza-
tion of the ordinary notion of probabilistic independence. This chapter has
focused on building intuitions about the interleaving step and the develop-
ment of Fourier theoretic algorithms paralleling those from Chapter 12 for
joining and splitting. Finally, we provided empirical evidence on the APA
dataset that riffled independence assumption can in fact approximately
hold in real data. In the next chapters we will use riffled independence to
analyze more datasets.
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14
D I S C O V E R I N G R I F F L E D I N D E P E N D E N C E S T R U C T U R E
I N R A N K E D D ATA

THUS far throughout Part III, we have focused exclusively on under-
standing riffled independent models with a single binary partitioning

of the full item set. In this section we explore a natural model simplifi-
cation which comes from the simple observation that, since the relative
ranking distributions fA and gB are again distributions over rankings, the
sets A and B can further be decomposed into riffle independent subsets.
We call such models hierarchical riffle independent decompositions. The main
contributions of Chapter 14 are as follows.

• We define a simple and intuitive family of hierarchical models based
on riffled independence relationships among ranked items.

• We propose an effective method for learning the hierarchical structure
of such models and in particular, we propose a simple score function
which evaluates the quality of a given hierarchical structure, and sug-
gest a simple optimization algorithm for finding the best hierarchical
structure for a given dataset.

• We provide a sample complexity analysis, showing that our struc-
tures can be learned with high probability in polynomial time given
polynomial training examples

• Finally, on a number of datasets, we show that our methods can be
applied to highlight simple latent organizational structures within
the data.

14.1 hierarchical riffle independence decompositions

For simplicity, we restrict consideration to binary hierarchies, defined as
tuples of the form H = (HA,HB), where HA and HB are either (1) null,
in which case H is called a leaf, or (2) hierarchies over item sets A and B
respectively. In this second case, A and B are assumed to be a nontrivial
partition of the item set.

Definition 91. We say that a distribution h factors riffle independently with
respect to a hierarchy H = (HA,HB) if item sets A and B are riffle indepen-
dent with respect to h, and both fA and gB factor riffle independently with
respect to subhierarchies HA and HB, respectively.

Like Bayesian networks, these hierarchies represent families of distribu-
tions obeying a certain set of (riffled) independence constraints and can
be parameterized locally. To draw from such a model, one generates full

173
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rankings recursively starting by drawing rankings of the leaf sets, then
working up the tree, sequentially interleaving rankings until reaching the
root. The parameters of these hierarchical models are simply the interleav-
ing and relative ranking distributions at the internal nodes and leaves of
the hierarchy, respectively.

By decomposing distributions over rankings into small pieces (like
Bayesian networks have done for other distributions), these hierarchical
models allow for better interpretability, efficient probabilistic representa-
tion, low sample complexity, efficient MAP optimization, and, as we show
in the next chapter, efficient inference.

Continuing with our running example of fruits and vegetables, one
can imagine that the fruits are further partitioned into two sets, a set
consisting of citrus fruits ((L) Lemons and (O) Oranges) and a set consist-
ing of mediterranean fruits ((F) Figs and (G) Grapes). To generate a full
ranking, one first draws rankings of the citrus and mediterranean fruits
independently (JL, OK and JG, FK, for example). Secondly, the two sets are
interleaved to form a ranking of all fruits (JG, L, O, FK). Finally, a ranking
of the vegetables is drawn (JP, CK) and interleaved with the fruit rankings
to form a full joint ranking: JP, G, L, O, F, CK. Notationally, we can express
the hierarchical decomposition as {C, P} ⊥m1

({L, O} ⊥m2
{F, G}). We can

also visualize hierarchies using trees (see Figure 38a for our example). The
subsets of items which appear as leaves in the tree are the leaf sets.

A natural question to ask is: if we used a different hierarchy with the
same leaf sets, would we capture the same distributions? For example, does
a distribution which decomposes according to the tree in Figure 38b also
decompose according to the tree in Figure 38a? The answer, in general,
is no, due to the fact that distinct hierarchies impose different sets of
independence assumptions, and as a result, different structures can be well
or badly suited for modeling a given dataset. Consequently, it is important
to use the “correct” structure if possible.

14.1.1 Shared independence structure

It is interesting to note, however, that while the two structures in Figures 38a
and 38b encode distinct families of distributions, it is possible to identify a
set of independence assumptions common to both structures. In particular
since both structures have the same leaf sets, any distributions consistent
with either of the two hierarchies must also be consistent with what we call
a 3-way decomposition. We define a d-way decomposition to be a distribution
with a single level of hierarchy, but instead of partitioning the entire item
set into just two subsets, one partitions into d subsets, then interleaves the
relative rankings of each of the d subsets together to form a joint ranking
of items. Any distribution consistent with either Figure 38b or 38a must
consequently also be consistent with the structure of Figure 38c. More
generally, we have:

Proposition 92. If h is a hierarchical riffle independent model with d leaf sets,
then h can also be written as a d-way decomposition.
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{C,P,L,O,F,G}

{C,P}

Vegetables

{L,O,F,G}

Fruits

{L,O}
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{F,G}

Medi-

terranean
(a) Example of hierarchical rif-

fled independence structure
on S6

{C,P,L,O,F,G}

{C,P,L,O}

{C,P} {L,O}

{F,G}

(b) Another example, not
equivalent to (a)
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by (a), (b)
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(d) Hierarchical decomposition
into singleton subset, where
each leaf set consists of a sin-
gle item (we will also refer
to this particular type of tree
as a 1-thin chain)

Figure 38: Examples of distinct hierarchical riffle independent structures.

Proof. We proceed by induction. Suppose the result holds for Sn ′ for all
n ′ < n. We want to establish that the result also holds for Sn. If h fac-
tors according to a hierarchical riffle independent model, then it can be
written as h = m · fA · gB, where m is the interleaving distribution, and
fA, gB themselves factor as hierarchical riffle independent distributions
with, say, d1 and d2 leaf sets, respectively (where d1 + d2 = d). By the
hypothesis, since |A|, |B| < n, we can factor both fA and gB as d1 and
d2-way decompositions respectively. We can therefore write fA and gB as:

fA(πA) = mA(τA1,...,Ad1
) ·
d1∏
i=1

fAi (φAi(πA)) ,

gB(πB) = mB(τB1,...,Bd2
) ·
d2∏
i=1

gBi (φBi(πB)) .

Substituting these decompositions into the factorization of the distribution
h, we have:

h(σ) = m(τA,B(σ))fA(φA(σ))gB(φB(σ)),

=
(
m(τA,B(σ))mA(τA1...,Ad1 )mB(τB1,...,Bd2

)
)
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{WB, II, CK, MS, LW}

{II}{WB, CK, MS, LW}

{MS, LW} {MS, LW}
1,3 4,5

2

Research Clinical

Community

Figure 39: Hierarchical structure learned from APA data.

·
d1∏
i=1

fAi (φAi(φA(σ)))

d2∏
i=1

gBi (φBi(φB(σ))) ,

= m̃(τA1,...,Ad1 ,B1...,Bd2
) ·
d1∏
i=1

fAi (φAi(σ))

d2∏
i=1

gBi (φBi(σ)) ,

where the last line follows because any legitimate interleaving of the sets A
and B is also a legitimate interleaving of the sets A1, . . . ,Ad1 ,B1, . . . ,Bd2
and since φAi(φA(σ)) = φAi(σ). This shows that the distribution h factors
as a d1 + d2-way decomposition, and concludes the proof.

In general, knowing the hierarchical decomposition of a model is more
desirable than knowing its d-way decomposition which may require many
more parameters

(
O( n!∏

i di!
), where i indexes over leaf sets

)
. For example,

the extreme case of the n-way decomposition requires O(n!) parameters
and captures every distribution over permutations.

14.1.2 Thin chain models

There is a class of particularly simple hierarchical models which we will
refer to as k-thin chain models. By a k-thin chain model, we refer to a
hierarchical structure in which the size of the smaller set at each split in
the hierarchy is fixed to be a constant and can therefore be expressed as:

(A1 ⊥m (A2 ⊥m (A3 ⊥m . . . ))), |Ai| = k, for all i.

See Figure 38d for an example of 1-thin chain. We view thin chains as being
somewhat analogous to thin junction tree models [7], in which cliques
are never allowed to have more than k variables. When k ∼ O(1), for
example, the number of model parameters scales polynomially in n. To
draw rankings from a thin chain model, one sequentially inserts items
independently, one group of size k at a time, into the full ranking.

Theorem 93. The kth order marginals are sufficient statistics for a k-thin chain
model.

Proof. Corollary of Theorem 90
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Example 94 (APA election data (continued)). The APA, as described by [30],
is divided into “academicians and clinicians who are on uneasy terms”. In
1980, candidates {1, 3} (W. Bevan and C. Kiesler who were research psychologists)
and {4, 5} (M.Siegle and L. Wright, who were clinical psychologists) fell on op-
posite ends of this political spectrum with candidate 2 (I. Iscoe) being somewhat
independent. Diaconis conjectured that voters choose one group over the other, and
then choose within. We are now able to verify Diaconis’ conjecture using our riffled
independence framework. After removing candidate 2 from the distribution, we per-
form a search within candidates {1, 3, 4, 5} to again find nearly riffle independent
subsets. We find that A = {1, 3} and B = {4, 5} are very nearly riffle independent
(with respect to KL divergence) and thus are able to verify that candidate sets {2},
{1, 3}, {4, 5} are indeed grouped in a riffle independent sense in the APA data. We
remark that in a later work, [92] identified candidate 2 (I. Iscoe) as belonging to
yet a third group of psychologists called community psychologists. The hierar-
chical structure that best describes the APA data is shown in Figure 39 and the
KL-divergence from the true distribution to the hierarchical model is dKL = .0676.

Finally for the two main opposing groups within the APA, the riffle shuffling
distribution for sets {1, 3} and {4, 5} is not well approximated by a biased riffle
shuffle. Instead, since there are two coalitions, we fit a mixture of two biased riffle
shuffles to the data and found the bias parameters of the mixture components to
be α1 ≈ .67 and α2 ≈ .17, indicating that the two components oppose each other
(since α1 and α2 lie on either side of .5).

14.1.3 Mallows models

We now review the well known Mallows models which can be seen as
a subset of the 1-thin chain model family. We show in particular that,
under a Mallows distribution, items are riffle independent with respect to
a particular chain hierarchy. Exploiting this riffle independent structure
yields an efficient method for conditioning on arbitrary partial rankings.

Let dK : Sn × Sn → R be the Kendall’s tau distance metric on rankings
(see Section 2.3.2 for a definition). Given two rankings σ1,σ2, dτ(σ1,σ2)
is defined as the minimum number of adjacent transpositions necessary
to convert one argument σ1 into the other, σ2. The Mallows model is a
distribution over rankings defined as:

hMallows(σ;φ,σ0) ∝ φ−dτ(σ,σ0), (14.1)

where σ0 represents a central or reference ranking and φ is a spread parame-
ter. For simplicity, we will assume that σ0 is the identity ranking mapping
item 1 to rank 1, item 2 to rank 2, and so on.

For a given ranking σ and each item j of the item set, define:

Vj(σ) = #{i : j+ 1 6 i 6 n, σ(i) < σ(j)},

which is simply the number of items in the itemset {j+ 1, . . . ,n} which are
ranked before item jwith respect to σ. The collection of Vjs fully determines
the ranking σ, and the procedure given in Algorithm 14.1 can be used to
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Algorithm 14.1: Reconstruct σ from the collection of Vjs. Note that Vn is
always zero and hence is not used in the algorithm. Input: V1, . . . ,Vn−1. Output:
A permutation σ ∈ Sn corresponding to the tuple (V1, . . . ,Vn−1).

reconstructSigma(V1, . . . ,Vn−1)

Initialize σ to be a ranking of {n}, mapping n to 1 ;
for j = n− 1,n− 2, . . . , 1 do

Insert item j in rank Vj + 1;
end
return (σ);

{1,2,3,4,5}

{1} {2,3,4,5}

{2} {3,4,5}

{3} {4,5}

{4} {5}

Figure 40: An example of a hierarchical structure over five food items

reconstruct σ ([97]). Fligner & Verducci first showed [36] (see also [97])
that a ranking can be sampled from the Mallows model by drawing the Vj
independently, each according to a particular exponentially parameterized
distribution. In particular, set each Vj to be a value r drawn from the set
{0, . . . ,n− j} with probability proportional to φr (where, again, φ is the
Mallows spread parameter). Using Algorithm 14.1 to reconstruct σ from
the drawn values of Vj yields an independent draw from a Mallows model
with spread parameter φ.

This generative procedure of drawing the Vj independently is exactly
the same as that of a riffle independent hierarchy in which a single item
is partitioned out of the hierarchy at each level of the hierarchy, with
exponentially parameterized interleaving distributions. For example, on
n = 5 items, the hierarchy encoding the factorization of the Mallows model
is given in Figure 40 with item 1 being partitioned out at the topmost level,
then item 2 partitioned out at the second layer, and so on. Since each leaf
node consists of a single item, there are no relative ranking parameters.
At each internal node of the hierarchy, the interleaving distribution which
determines the position where item j is inserted into the item subset
{j+ 1, . . . ,n} is given by m(τAB = B|B| . . . |A| . . . |B|B) ∝ φr, where r is the
position of the A item in τ.

As a side note, we remark that these interleaving distributions are very
similar to (but not exactly the same as) the biased riffle shuffles introduced
in the previous chapter, where the interleaving step is likened to the riffle
shuffle for cards, in which one drops cards one by one, selected from the
left or right deck after each drop with some probability.
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14.2 objective functions for structure learning

Since different hierarchies impose different independence assumptions,
we would like to find the structure that is best suited for modeling a
given ranking dataset. On some datasets, a natural hierarchy might be
available — for example, if one were familiar with the typical politics
of APA elections, then it may have been possible to “guess” the optimal
hierarchy. However, for general ranked data, it is not always obvious what
kind of groupings riffled independence will lead to, particularly for large
n. Should fruits really be riffle independent of vegetables? Or are green
foods riffle independent of red foods?

Over the next three sections, we address the problem of automatically
discovering hierarchical riffle independent structures from training data.
Key among our observations is the fact that while absolute item ranks
cannot be independent due to mutual exclusivity, relative ranks between
sets of items are not subject to the same constraints. More than simply
being a ‘clustering’ algorithm, however, our procedure can be thought of
as a structure learning algorithm, like those from the graphical models
literature [74], which find the optimal (riffled) independence decomposition
of a distribution.

The base problem that we address in this current section is how to find
the best structure if there is only one level of partitioning and two leaf sets,
A, B. Alternatively, we want to find the topmost partitioning of the tree.
In Section 14.3, we use this base case as part of a top-down approach for
learning a full hierarchy.

14.2.1 Problem statement

Given then, a training set of rankings, σ(1), σ(2), . . . ,σ(m) ∼ h, drawn
i.i.d. from a distribution in which a subset of items, A ⊂ {1, . . . ,n}, is riffle
independent of its complement, B, the problem which we address in this
section is that of automatically determining the sets A and B. If h does
not exactly factor riffle independently, then we would like to find the riffle
independent approximation which is closest to h in some sense. Formally,
we would like to solve the problem:

arg min
A

min
m,f,g

DKL(ĥ(σ) ||m(τA,B(σ))f(φA(σ))g(φB(σ))), (14.2)

where ĥ is the empirical distribution of training examples and DKL is
the Kullback-Leibler divergence measure. Equation 14.2 is a seemingly
reasonable objective since it can also be interpreted as maximizing the
likelihood of the training data. In the limit of infinite data, Equation 14.2
can be shown via the Gibbs inequality to attain its minimum, zero, at the
subsets A and B, if and only if the sets A and B are truly riffle independent
of each other.

For small problems, one can actually solve Problem 14.2 using a single
computer by evaluating the approximation quality of each subset A and tak-
ing the minimum, which was the approach taken in Example 94. However,
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for larger problems, one runs into time and sample complexity problems
since optimizing the globally defined objective function (Equation 14.2)
requires relearning all model parameters (m, fA, and gB) for each of the
exponentially many subsets of {1, . . . ,n}. In fact, for large sets A and B, it is
rare that one would have enough samples to estimate the relative ranking
parameters fA and gB without already having discovered the hierarchical
riffle independent decompositions of A and B. We next propose a more
locally defined objective function, reminiscent of clustering, which we will
use instead of Equation 14.2. As we show, our new objective will be more
tractable to compute and have lower sample complexity for estimation.

14.2.2 Proposed objective function

The approach we take is to minimize a different measure that exploits
the observation that absolute ranks of items in A are fully independent of
relative ranks of items in B, and vice versa (which we prove in Proposition 95).
With our vegetables and fruits, for example, knowing that Figs is ranked
first among all six items (the absolute rank of a fruit) should give no
information about whether Corn is preferred to Peas (the relative rank of
vegetables). More formally, given a subset A = {a1, . . . ,a`}, recall that σ(A)
denotes the vector of (absolute) ranks assigned to items in A by σ (thus,
σ(A) = (σ(a1),σ(a2), . . . ,σ(a`))). We propose to minimize an alternative
objective function:

F(A) ≡ I(σ(A) ; φB(σ)) + I(σ(B) ; φA(σ)), (14.3)

where I denotes the mutual information (defined between two variables X1
and X2 by I(X1;X2) ≡ DKL(P(X1,X2)||P(X1)P(X2)).

The function F does not have the same likelihood interpretation as the
objective function of Equation 14.2. However, it can be thought of as a
composite likelihood of two models, one in which the relative rankings
of A are independent of absolute rankings of B, and one in which the
relative rankings of B are independent of absolute rankings of A (see
Appendix E.2). With respect to distributions which satisfy (or approximately
satisfy) both models (i.e., the riffle independent distributions), minimizing
F is equivalent to (or approximately equivalent to) maximizing the log
likelihood of the data. Furthermore, we can show that F is guaranteed to
detect riffled independence:

Proposition 95. F(A) = 0 is a necessary and sufficient criterion for a subset
A ⊂ {1, . . . ,n} to be riffle independent of its complement, B.

Proof. Suppose A and B are riffle independent. We first claim that σ(A)
and φB(σ) are independent. To see this, observe that the absolute ranks
of A, σ(A), are determined by the relative rankings of A, φA(σ) and the
interleaving τA,B(σ). By the assumption that A and B are riffle independent,
we know that the relative rankings of A and B (φA(σ) and φB(σ)), and the
interleaving τA,B(σ) are independent, establishing the claim. The argument
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that σ(B) and φA(σ) are independent is similar, thus establishing one
direction of the proposition.

To establish the reverse direction, assume that Equation 14.3 evaluates
to zero on sets A and B. It follows that σ(A) ⊥ φB(σ) and φA(σ) ⊥
σ(B). Now, as a converse to the observation from above, note that the
absolute ranks of A determine the relative ranks of A, φA(σ), as well as the
interleaving τA,B(σ). Similarly, σ(B) determines φB(σ) and τA,B(σ). Thus,
(φA(σ), τA,B(σ)) ⊥ φB(σ) and φA(σ) ⊥ (τA,B(σ),φB(σ)). It then follows
that φA(σ) ⊥ τA,B(σ) ⊥ φB(σ).

As with Equation 14.2, optimizing F is still intractable for large n. How-
ever, F motivates a natural proxy, in which we replace the mutual informa-
tions defined over all n variables by a sum of mutual informations defined
over just three variables at a time.

Definition 96 (Tripletwise mutual informations). Given any triplet of dis-
tinct items, (i, j,k), we define the tripletwise mutual information term,
Ii;j,k ≡ I(σ(i) ; σ(j) < σ(k)).

The tripletwise mutual information Ii;j,k can be computed as follows:

I(σ(i) ; σ(j) < σ(k)) =
∑
σ(i)

∑
σ(j)<σ(k)

h(σ(i),σ(j) < σ(k)) log
h(σ(i),σ(j) < σ(k))
h(σ(i))h(σ(j) < σ(k))

,

where the inside summation runs over two values, true/false, for the binary
variable σ(j) < σ(k). To evaluate how riffle independent two subsets A and
B are, we want to examine the triplets that straddle the two sets.

Definition 97 (Internal and Cross triplets). We define ΩcrossA,B to be the
set of triplets which “cross” from set A to set B: ΩcrossA,B ≡ {(i; j,k) : i ∈
A, j,k ∈ B}. ΩcrossB,A is similarly defined. We also define ΩintA to be the set
of triplets that are internal to A: ΩintA ≡ {(i; j,k) : i, j,k ∈ A}, and again,
ΩintB is similarly defined.

Our proxy objective function can be written as the sum of the mutual
information evaluated over all of the crossing triplets:

F̃(A) ≡
∑

(i,j,k)∈ΩcrossA,B

Ii;j,k +
∑

(i,j,k)∈ΩcrossB,A

Ii;j,k. (14.4)

F̃ can be viewed as a low order version of F, involving mutual informa-
tion computations over triplets of variables at a time instead of n-tuples.
The mutual information Ii;j,k, for example, reflects how much the rank
of a vegetable (i) tells us about how two fruits (j, k) compare. If A and B
are riffle independent, then we know that Ii;j,k = 0 for any (i, j,k) such
that i ∈ A, j,k ∈ B (and similarly for any (i, j,k)) such that i ∈ B, j,k ∈ A.
Given that fruits and vegetables are riffle independent sets, knowing that
Grapes is preferred to Figs should give no information about the absolute
rank of Corn, and therefore ICorn;Grapes,Figs should be zero. Note that
such tripletwise independence assertions bear resemblance to assumptions

[ August 4, 2011 at 11:32 ]



182 discovering riffled independence structure in ranked data

A
B

Internal Triplet

Cross Triplet

Figure 41: This diagram shows a graphical depiction of the problem of finding riffle
independent subsets. A triangle with vertices (i, j,k) represents the term Ii;j,k
Since the Ii;j,k are not invariant with respect to a permutation of the indices i,
j, and k, the triangles are directed, and we therefore use double bars represent
the nodes j,k for the term Ii;j,k. Note that if the tripletwise terms were instead
replaced by edgewise terms, the problem would simply be a standard clustering
problem.
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Figure 42: Here we show the matrix of tripletwise mutual informations computed from
the APA dataset (see Example 98).

sometimes made in social choice theory, commonly referred to as Indepen-
dence of Irrelevant Alternatives [6], where the addition of a third element i,
is assumed to not affect whether one prefers an element j over k.

The objective F̃ is somewhat reminiscent of typical graphcut and clus-
tering objectives. Instead of partitioning a set of nodes based on sums of
pairwise similarities, we partition based on sums of tripletwise affinities.
We show a graphical depiction of the problem in Figure 41, where cross
triplets (in ΩcrossA,B , ΩcrossB,A ) have low weight and internal triplets (in ΩintA ,
ΩintB ) have high weight. The objective is to find a partition such that the
sum over cross triplets is low. In fact, the problem of optimizing F̃ can be

[ August 4, 2011 at 11:32 ]



14.2 objective functions for structure learning 183

seen as an instance of the weighted, directed hypergraph cut problem [42].
Note that the word directed is significant for us, because, unlike typical clus-
tering problems, our triplets are not symmetric (for example, Ii;jk 6= Ij;ik),
resulting in a nonstandard and poorly understood optimization problem.

Example 98 (APA election data (continued)). Figure 41 visualizes the triplet-
wise mutual informations computed from the APA dataset. Since there are five
candidates, there are

(
5
2

)
= 10 pairs of candidates. The (i, (j,k)) entry in the

matrix corresponds to I(σ(i);σ(j) < σ(k)). For easier visualization, we have set
entries of the form (i, (i,k)) and (i, (j, i)) to be zero since they are not counted in
the objective function.

The highlighted row corresponds to candidate 2, in which all of the mutual
information terms are close to zero. We see that the tripletwise mutual information
terms tell a story consistent with the conclusion of Example 86, in which we
showed that candidate 2 was approximately riffle independent of the remaining
candidates.

Finally, it is also interesting to examine the (3, (1, 4)) entry. It is the largest
mutual information in the matrix, a fact which should not be surprising since
candidates 1 and 3 are politically aligned (both research psychologists). Thus,
knowing, for example, that candidate 3 was ranked first is a strong indication that
candidate 1 was preferred over candidate 4.

14.2.3 Encouraging balanced partitions

In practice, like the minimum cut objective for graphs, the tripletwise
objective of Equation 14.4 has a tendency to “prefer” small partitions
(either |A| or |B| very small) to more balanced partitions (|A|, |B| ≈ n/2) due
to the fact that unbalanced partitions have fewer triplets that cross between
A and B. The simplest way to avoid this bias is to optimize the objective
function over subsets of a fixed size k. As we discuss in the next section,
optimizing with a fixed k can be useful for building thin hierarchical
riffle independent models. Alternatively, one can use a modified objective
function that encourages more balanced partitions. For example, we have
found the following normalized cut [119] inspired variation of our objective
to be useful for detecting riffled independence when the size k is unknown:

Fbalanced(A) ≡

∑
ΩcrossA,B

Ii;j,k∑
ΩcrossA,B

Ii;j,k +
∑
ΩintA

Ii;j,k
+

∑
ΩcrossB,A

Ii;j,k∑
ΩcrossB,A

Ii;j,k +
∑
ΩintB

Ii;j,k
.

(14.5)

Intuitively, the denominator in Equation 14.5 penalizes subsets whose
interiors have small weight. Note that there exist many variations on the
objective function that encourage balance, but Fbalanced is the one that
we have used in our experiments.
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14.2.4 Low-order detectability assumptions

When does F̃ detect riffled independence? It is not difficult to see, for
example, that F̃ = 0 is a necessary condition for riffled independence, since
A ⊥m B implies Ia;b,b ′ = 0. We have:

Proposition 99. If A and B are riffle independent sets, then F̃(A) = 0.

However, the converse of Proposition 99 is not true in full generality
without accounting for dependencies that involve larger subsets of variables.
Just as the pairwise independence assumptions that are commonly used for
randomized algorithms [100]1 do not imply full independence between two
sets of variables, there exist distributions which “look” riffle independent
from tripletwise marginals but do not factor upon examining higher-order
terms. Nonetheless, in most practical scenarios, we expect F̃ = 0 to imply
riffled independence.

14.2.5 Quadrupletwise objective functions for riffled independence

A natural variation of our method is to base the objective function on the
following quantities, defined over quadruplets of items instead of triplets:

Iij;kl ≡ I(σ(i) < σ(j) ; σ(k) < σ(`)). (14.6)

Intuitively, Iij;kl measures how much knowing that, say, Peas is pre-
ferred to Corn, tells us about whether Grapes are preferred to Oranges.
Again, if the fruits and vegetables are riffle independent, then the mu-
tual information should be zero. Summing over terms which cross be-
tween the cut, we obtain a quadrupletwise objective function defined as:
Fquad(A) ≡

∑
(i,j)∈A,(k,`)∈B Iij;kl. If A and B are riffle independent with

i, j ∈ A and k, ` ∈ B, then the mutual information Iij;kl is zero. Unlike their
tripletwise counterparts, however, the Iij,kl do not arise from a global mea-
sure that is both necessary and sufficient for detecting riffled independence.
In particular, I(φA(σ);φB(σ)) = 0 is insufficient to guarantee riffled inde-
pendence. For example, if the interleaving depends on the relative rankings
of A and B, then riffled independence is not satisfied, yet Fquad(A) = 0.
Moreover, it is not clear how one would detect riffle independent subsets
consisting of a single element using a quadrupletwise measure. As such,
we have focused on tripletwise measures in our experiments. Nonetheless,
quadrupletwise measures may potentially be useful in practice (for detect-
ing larger subsets) and have the significant advantage that the Iij;kl can be
estimated with fewer samples and using almost any imaginable form of
partially ranked data.

1 A pairwise independent family of random variables is one in which any two members are
marginally independent. Subsets with larger than two members may not necessarily factor
independently, however.
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14.2.6 Estimating the objective from samples

We have so far argued that F̃ is a reasonable function for finding riffle
independent subsets. However, since we only have access to samples rather
than the true distribution h itself, it will only be possible to compute an
approximation to the objective F̃. In particular, for every triplet of items,
(i, j,k), we must compute an estimate of the mutual information Ii;j,k
from i.i.d. samples drawn from h, and the main question is: how many
samples will we need in order for the approximate version of F̃ to remain
a reasonable objective function?

In the following, we denote the estimated value of Ii;j,k by Îi;j,k. For
each triplet, we use a regularized procedure due to [51] to estimate mutual
information. We adapt his sample complexity bound to our problem below.

Lemma 100. For any fixed triplet (i, j,k), the mutual information Ii;j,k can
be estimated to within an accuracy of ∆ with probability at least 1 − γ using
S(∆,γ) ≡ O

(
n2

∆2
log2 n∆ log nγ

)
i.i.d. samples and the same amount of time.

The approximate objective function is therefore:

F̂(A) ≡
∑

(i,j,k)∈ΩcrossA,B

Îi;j,k +
∑

(i,j,k)∈ΩcrossB,A

Îi;j,k.

What we want to now show is that, if there exists a unique way to partition
{1, . . . ,n} into riffle independent sets, then given enough training exam-
ples, our approximation F̂ uniquely singles out the correct partition as its
minimum with high probability. A class of riffle independent distributions
for which the uniqueness requirement is satisfied consists of the distribu-
tions for which A and B are strongly connected according to the following
definition.

Definition 101. A subset A ⊂ {1, . . . ,n} is called ε-third-order strongly con-
nected if, for every triplet i, j,k ∈ A with i, j,k distinct, we have Ii;j,k > ε.

If a set A is riffle independent of B and both sets are third order strongly
connected, then we can ensure that riffled independence is detectable from
third-order terms and that the partition is unique. We have the following
probabilistic guarantee.

Theorem 102. Let A and B be ε-third order strongly connected riffle independent
sets, and suppose |A| = k. Given S(∆, ε) ≡ O

(
n4

ε2
log2 nε log nγ

)
i.i.d. samples,

the minimum of F̂ is achieved at exactly the subsets A and B with probability at
least 1− γ.

See Appendix E for details. Finally, we remark that the strong connectivity
assumptions used in Theorem 102 are stronger than necessary — and with
respect to certain interleaving distributions, it can even be the case that
the estimated objective function singles out the correct partition when all
of internal triplets belonging to A and B have zero mutual information.
Moreover, in some cases, there are multiple valid partitionings of the item
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set. For example the uniform distribution is a distribution in which every
subset A ⊂ {1, . . . ,n} is riffle independent of its complement. In such cases,
multiple solutions are equally good when evaluated under F̃, but not its
sample approximation, F̂.

14.3 algorithms for structure discovery

Having now designed a function that is tractable to estimate from both
perspectives of computational and sample complexity, we turn to the
problem of learning the hierarchical riffle independence structure of a
distribution from training examples. Instead of directly optimizing an
objective in the space of possible hierarchies, we take a simple top-down
approach in which the item sets are recursively partitioned by optimizing
F̂ until some stopping criterion is met (for example, when the leaf sets are
smaller than some k, or simply stopping after a fixed number of splits).

exhaustive optimization. Optimizing the function F̂ requires search-
ing through the collection of subsets of size |A| = k, which, when performed
exhaustively, requires O

((
n
k

))
time. An exhaustive approach thus runs in

exponential time, for example, when k ∼ O(n).
However, when the size of k is known and small (k ∼ O(1)), the optimal

partitioning of an item set can be found in polynomial time by exhaustively
evaluating F̂ over all k-subsets.

Corollary 103. Under the conditions of Theorem 102, one needs at most S(∆, ε) ≡
O
(
n2

ε2
log2 nε log nγ

)
samples to recover the exact riffle independent partitioning

with probability 1− γ.

When k is small, we can therefore use exhaustive optimization to learn
the structure of k-thin chain models (Section 14.1.2) in polynomial time.
The structure learning problem for thin chains is to discover how the items
are partitioned into groups, which group is inserted first, which group is
inserted second, and so on. To learn the structure of a thin chain, we can
use exhaustive optimization to learn the topmost partitioning of the item
set, then recursively learn a thin chain model for the items in the larger
subset.

14.3.1 Handling arbitrary partitions using Anchors

When k is large, or even unknown, F̂ cannot be optimized using exhaustive
methods. Instead, we propose a simple algorithm for finding A and B based
on the following observation. If an oracle could identify any two elements of
the set A, say, a1,a2, in advance, then the quantity Ix;a1,a2 = I(x;a1 < a2)
indicates whether the item x belongs to A or B since Ix;a1,a2 is nonzero in
the first case, and zero in the second case.

For finite training sets, when I is only known approximately, one can
sort the set {Ix;a1,a2 ; x 6= a1,a2} and if k is known, take the k items closest
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Algorithm 14.2: Pseudocode for partitioning using the Anchors method. Input:
a training set of rankings {σ(1), . . . ,σ(m)}, and k ≡ |A| (the size of A). Output:. a
riffle independent partitioning of item set, (Abest,Bbest)

AnchorsPartition({σ(1), . . . ,σ(m)}, k ≡ |A|):

Fix a1 to be any item ;
forall a2 ∈ {1, . . . ,n}, a1 6= a2 do

Estimate Îx;a1,a2 for all x 6= a1,a2;
Îk ← kth smallest item in {Îx;a1,a2 ; x 6= a1,a2} ;
Aa1,a2 ← {x : Îx;a1,a2 6 Î

k} ;
end
Abest ← arg mina1,a2 F̂(Aa1,a2);
Bbest ← {1, . . . ,n}\Abest ;
return ([Abest,Bbest]);

to zero to be the set B (when k is unknown, one can use a threshold to infer
k). Since we compare all items against a1,a2, we refer to these two fixed
items as “anchors”.

Of course a1,a2 are not known in advance, but by fixing a1 to be an
arbitrary item, one can repeat the above method for all n−1 settings of a2 to
produce a collection of O(n2) candidate partitions. Each partition can then
be scored using the approximate objective F̂, and a final optimal partition
can be selected as the minimum over the candidates. See Algorithm 14.2. In
cases when k is not known a priori, we evaluate partitions for all possible
settings of k using F̂.

Since the Anchors method does not require searching over subsets, it can
be significantly faster than an exhaustive optimization of F̂. Moreover, by
assuming ε-third order strong connectivity as in the previous section, one
can use similar arguments to derive sample complexity bounds.

Corollary 104 (of Theorem 102). Let A and B be ε-third order strongly con-
nected riffle independent sets, and suppose |A| = k. Given S(∆, ε) i.i.d. samples,
the output of the Anchors algorithm is exactly [A,B] with probability 1− γ. In
particular, the Anchors estimator is consistent.

We remark, however, that there are practical differences that can at times
make the Anchors method somewhat less robust than an exhaustive search.
Conceptually, anchoring works well when there exists two elements that are
strongly connected with all of the other elements in its set, which can then
be used as the anchor elements a1,a2. An exhaustive search can work well
in weaker conditions such as when items are strongly connected through
longer paths. We show in our experiments that the Anchors method can
nonetheless be quite effective for learning hierarchies.

14.3.2 Running time.

We now consider the running time of our structure learning procedures. In
both cases, it is necessary to precompute the mutual information quantities
Ii;j,k for all triplets i, j,k from m samples. For each triplet, we can compute
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Ii;j,k in linear time with respect to the sample size. The set of all triplets
can therefore be computed in O(mn3) time.

The exhaustive method for finding the k-subset which minimizes F̂

requires evaluating the objective function at
(
n
k

)
= O(nk) subsets. What is

the complexity of evaluating F̂ at a particular partition A,B? We need to
sum the precomputed mutual informations over the number of triangles
that cross between A and B. If |A| = k and |B| = n − k, then we can
bound the number of such triangles by k(n− k)2 + k2(n− k) = O(kn2).
Thus, we require O(nk + kn2) optimization time, leading to a bound of
O(knk+2 +mn3) total time.

The Anchors method requires us to (again) precompute mutual infor-
mations. The other seeming bottleneck is the last step, in which we must
evaluate the objective function F̂ at O(n2) partitions. In reality, if |A| and |B|

are both larger than 1, then a1 can be held fixed at any arbitrary element,
and we must only optimize over O(n) partitions. When |A| = |B| = 1,
then n = 2, in which case the two sets are trivially riffle independent
(independent of the actual distribution). As we showed in the previous
paragraph, evaluating F̂ requires O(kn2) time, and thus optimization using
the Anchors method = O(n3(k+m)) total time. Since k is much smaller
than m (in any meaningful training set), we can drop it from the big-O
notation to get O(mn3) time complexity, showing that the Anchors method
is dominated by the time that is required to precompute and cache mutual
informations.

14.4 quantifying stability of structure recovery

Given a hierarchy estimated from data, we now discuss how one might
practically quantify how confident one should be about the hypothesized
structure. We might like to know if the amount of data that was used for
estimating the structure was adequate to support the learned structure,
and, if the the data looked slightly different, would the hypothesis change?

Bootstrapping [33] offers a simple approach — repeatedly resample the
data with replacement, and estimate a hierarchical structure for each re-
sampling. The difference between our setting and typical bootstrapping
settings, however, is that our structures lie in a large discrete set. Thus,
unlike continuous parameters, whose confidence we can often summa-
rize with intervals or ellipses, it is not clear how one might compactly
summarize a collection of many hierarchical clusterings of items.

The simplest way to summarize the collection of hierarchies obtained via
the bootstrap is to measure the fraction of the estimated structures which
are identical to the structure estimated from the original unperturbed
dataset. If, for small sets of resampled data, the estimated hierarchy is
consistently identical to that obtained from the original data, then we
can be confident that the data supports the hypothesis. We show in the
following example that, for the structure which was learned from the APA
dataset, a far smaller dataset would have sufficed.
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Figure 43: We show the distribution of structures estimated from bootstrapped
samples of the APA data (with varying sample sizes): (a) plots (in solid
red) the fraction of bootstrapped trees for each sample size which agree
exactly with the hierarchy given in Figure 39; In (b), we summarize the
boostrap distribution for the largest sample sizes.

Example 105 (APA Election data (continued)). As our final APA related
example, we show the results of bootstrap resampling in Figure 43. To generate the
plots, we resampled the APA dataset with replacement 200 times each for varying
sample sizes, and ran our Anchors algorithm on each resulting sample. Figure 43a
plots (in solid red) the fraction of bootstrapped trees for each sample size which
agree exactly with the hierarchy given in Figure 39. Given that we forced sets to
be partitioned until they had at most 2 items, there are 120 possible hierarchical
structures for the APA dataset.

It is interesting to see that the hierarchies returned by the algorithm are surpris-
ingly stable even given fewer than 100 samples, with about 25% of bootstrapped
trees agreeing with the optimal hierarchy. At 1000 samples, almost all trees agree
with the optimal hierarchy. In Figure 43b, we show a table of the bootstrap distri-
bution for the largest sample sizes (which were concentrated at only a handful of
trees).

For larger item sets n, however, it is rarely the case that there is enough
data to strongly support the hierarchy in terms of the above measure.
In these cases, instead of asking whether entire structures agree with
each other exactly, it makes sense to ask whether estimated substructures
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agree. For example, a simple measure might amount to computing the
fraction of structures estimated from resampled datasets which agreed with
the original structure at the topmost partition. Another natural measure
is to count the fraction of structures which correctly recovered all (or a
subset of) leaf sets for the original dataset, but not necessarily the correct
hierarchy. By Proposition 92, correctly discovering the leaf set partitioning
is probabilistically meaningful, and corresponds to correctly identifying
the d-way decomposition corresponding to a distribution, but failing to
identifying the specific hierarchy.

We remark that sometimes, there is no one unique structure correspond-
ing to a distribution. The uniform distribution, for example, is consistent
with any hierarchical riffle independent structure, and so bootstrapped hier-
archies will not concentrate on any particular structure or even substructure.
Moreover, even when there is true unique structure corresponding to the
generating distribution, it may be the case that other simpler structures
perform better when there is not much available training data.

14.5 experiments

In this section, we present a series of experiments to validate our models
and methods. All experiments were implemented in Matlab, except for the
Fourier theoretic routines, which were written in C++. We tested on lab
machines with two AMD quadcore Opteron 2.7GHz processors with 32 Gb
memory. We have already analyzed the APA data extensively throughout
Part III. Here, we demonstrate our algorithms on simulated data as well as
other real datasets, namely, sushi preference data, and Irish election data.

14.5.1 Simulated data

We first applied our methods to synthetic data to show that, given enough
samples, our algorithms do effectively recover the optimal hierarchical
structures which generated the original datasets. For various settings of
n, we simulated data drawn jointly from a k-thin chain model (for k =

4) with a random parameter setting for each structure and applied our
exact method for learning thin chains to each sampled dataset. First, we
investigated the effect of varying sample size on the proportion of trials
(out of fifty) for which our algorithms were able to (a) recover the full
underlying tree structure exactly, (b) recover the topmost partition correctly,
or (c) recover all leaf sets correctly (but possibly out of order). Figure 44a
shows the result for an itemset of size n = 16. Figure 44b, shows, as
a function of n, the number of samples that were required in the same
experiments to (a) exactly recover the full underlying structure or (b) recover
the correct leaf sets, for at least 90% of the trials. What we can observe
from the plots is that, given enough samples, reliable structure recovery is
indeed possible. It is also interesting to note that recovery of the correct leaf
sets can be done with much fewer samples than are required for recovering
the full hierarchical structure of the model.
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Figure 44: Structure discovery experiments on synthetic data

After learning a structure for each dataset, we learned model parameters
and evaluated the log-likelihood of each model on 200 test examples drawn
from the true distributions. In Figure 44c, we compare log-likelihood perfor-
mance when (a) the true structure is given (but not parameters), (b) a k-thin
chain is learned with known k, and (c) when we use a random generated
1-chain structure. As expected, knowing the true structure results in the
best performance, and the 1-chain is overconstrained. However, our struc-
ture learning algorithm is eventually able to catch up to the performance
of the true structure given enough samples. It is also interesting to note
that the jump in performance at the halfway point in the plot coincides
with the jump in the success rate of discovering all leaf sets correctly —
we conjecture that performance is sometimes less sensitive to the actual
hierarchy used, as long as the leaf sets have been correctly discovered.

To test the Anchors algorithm, we ran the same simulation using Al-
gorithm 14.2 on data drawn from hierarchical models with no fixed k.
We generated roughly balanced structures, meaning that item sets were
recursively partitioned into (almost) equally sized subsets at each level of
the hierarchy. From Figure 44d, we see that the Anchors algorithm can
also discover the true structure given enough samples. Interestingly, the
difference in sample complexity for discovering leaf sets versus discovering
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1. ebi (shrimp) 2. anago (sea eel) 3. maguro (tuna)

4. ika (squid) 5. uni (sea urchin) 6. sake (salmon roe)

7. tamago (egg) 8. toro (fatty tuna) 9. tekka-maki (tuna roll)

10. kappa-maki (cucumber roll)

Figure 45: List of sushi types in the [70] dataset

the full tree is not nearly as pronounced as in Figure 44a. We believe that
this is due to the fact that the balanced trees have less depth than the thin
chains, leading to fewer opportunities for our greedy top-down approach
to commit errors.

14.5.2 Sushi preference data

We now turn to analyzing real datasets. For our first analysis, we examine
the sushi preference ranking dataset [70] consisting of 5000 full rankings
of ten types of sushi. The items are enumerated (again) in Figure 45. Note
that, compared to the APA election data, the sushi dataset has twice as
many items, but fewer examples.

Figure 48 shows the hierarchical structure that we learn using the entire
sushi dataset. Since the sushi are not prepartitioned into distinct coalitions,
it is somewhat more difficult than with, say, the APA data, to interpret
whether the estimated structure makes sense. However, parts of the tree
certainly seem like reasonable groupings. For example, all of the tuna
related sushi types have been clustered together. Tamago and kappa-maki
(egg and cucumber rolls) are “safer”, vegetarian choices, while uni and sake
(sea urchin and salmon roe) are the somewhat more daring selections (the
uni/sake category can also be described as the non-vegetarian/non-meat
choices). Anago (sea eel), is the odd man out in the estimated hierarchy,
being partitioned away from the remaining items at the top of the tree.

To understand the behavior of our algorithm with smaller sample sizes,
we looked for features of the tree from Figure 48 which remained stable
even when learning with smaller sample sizes. Figure 47 summarizes the
results of our bootstrap analysis for the sushi dataset, in which we resample
from the original training set 200 times at each of different sample sizes
and plot the proportion of learned hierarchies which, (a) recover ‘sea eel’
as the topmost partition, (b) recover all leaf sets correctly, (c), recover the
entire tree correctly, (d) recover the tuna-related sushi leaf set, (e) recover
the {tamago, kappa-maki} leaf set, and (f) recover the {uni, sake} leaf set.

14.5.3 Irish election data

We next applied our algorithms to a larger Irish House of Parliament
(Dáil Éireann) election dataset from the Meath constituency in Ireland
(Figure 49a). The Dáil Éireann uses the single transferable vote (STV) election
system, in which voters rank a subset of candidates. In the Meath con-
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ence data
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Figure 46: Sushi preference dataset: exact first-order marginals and riffle indepen-
dent approximation
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Figure 47: Stability of bootstrapped tree ‘features’ of the sushi dataset

stituency, there were 14 candidates in the 2002 election, running for five
allotted seats. The candidates identified with the two major rival political
parties, Fianna Fáil and Fine Gael, as well as a number of smaller parties
(Figure 49b). See [44] for more election details (including candidate names)
as well as an alternative analysis. In our experiments, we used a subset of
roughly 2500 fully ranked ballots from the election.

To summarize the dataset, Figure 50a shows the matrix of first-order
marginals estimated from the dataset. Candidates {1, 2, 4, 5, 6, 13} form the
set of “major” party candidates belonging to either Fianna Fáil or Fine Gael,
and as shown in the figure, fared much better in the election than the other
seven minor party candidates. Notably, candidates 11 and 12 (belonging
to the Christian Solidary Party and Sinn Féin, respectively) received on
average, the lowest ranks in the 2002 election. One of the differences
between the two candidates, however, is that a significant portion of the
electorate also ranked the Sinn Féin candidate very high.
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{1,2,3,4,5,6,7,8,9,10}
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{3,7,8,9,10} {1}

{3,8,9} {7,10}

anago
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(sea urchin, salmoe roe)

ebi
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maguro, toro, tekka-maki
(tuna, fatty tuna, tuna roll)

tamago, kappa-maki
(egg, cucumber roll)

Figure 48: Learned hierarchy for sushi dataset using all 5000 rankings

(a) The Meath constituency in
Ireland, shown in green,
was one of three constituen-
cies to have electronic vot-
ing in 2002. (Map from
Wikipedia)

Candidate Party

1 Brady, J. Fianna Fáil

2 Bruton, J. Fine Gael

3 Colwell, J. Independent

4 Dempsey, N. Fianna Fáil

5 English, D. Fine Gael

6 Farrelly, J. Fine Gael

7 Fitzgerald, B. Independent

8 Kelly, T. Independent

9 O’Brien, P. Independent

10 O’Byrne, F. Green Party

11 Redmond, M. Christian Solidarity

12 Reilly, J. Sinn Féin

13 Wallace, M. Fianna Fáil

14 Ward, P. Labour

(b) List of candidates from the Meath con-
stituency election in 2002 for five seats in
the Dáil Éireann (reproduced from [44])

Figure 49: Irish election dataset summary

Though it may not necessarily be clear how one might partition the
candidates, a natural idea might be to assume that the major party can-
didates (A) are riffle independent of the minor party candidates (B). In
Figure 50b, we show the first-order marginals corresponding to an approxi-
mation in which A and B are assumed to be riffle independent. Visually,
the approximate first-order marginals can be seen to be roughly similar to
the exact first-order marginals, however there are significant features of the
matrix which are not captured by the approximation — for example, the
columns belonging to candidates 11 and 12 are not well approximated. In
Figure 50c, we plot a more principled approximation corresponding to a
learned hierarchy, which we discuss next. As can be seen, the first-order
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Figure 50: Irish Election dataset: exact first-order marginals and riffle independent
approximations

marginals obtained via structure learning is visually much closer to the
exact marginals.

As with the APA data, both the exhaustive optimization of F̂ and the
Anchors algorithm returned the same tree, with running times of 69.7
seconds and 2.1 seconds respectively (not including the 3.1 seconds required
for precomputing mutual informations). The resulting tree, with candidates
enumerated alphabetically from 1 through 14, is shown (only up to depth
4), in Figure 51. As expected, the candidates belonging to the two major
parties, Fianna Fáil and Fine Gael, are neatly partitioned into their own
leaf sets. The topmost leaf is the Sinn Fein candidate, indicating that voters
tended to insert him into the ranking independently of all of the other 13

candidates.
To understand the behavior of our algorithm with smaller sample sizes,

we looked for features of the tree from Figure 51 which remained stable
even when learning with smaller sample sizes. In Figure 52a, we resampled
from the original training set 200 times at different sample sizes and plot the
proportion of learned hierarchies which, (a) recover the Sinn Fein candidate
as the topmost leaf, (b) partition the two major parties into leaf sets, and
(c) agree with the original tree on all leaf sets, and (d) recover the entire
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{3} {7,8,9,10,14}

{7,8,9,10} {14}

{7,8,9} {10}

Sinn Fein

Christian 

Solidarity

Fianna Fáil

Fine Gael

Independent

Labour

GreenIndependent

Figure 51: Learned hierarchy for Irish Election dataset using all 2500 ballots

tree. Note that while the dataset is insufficient to support the entire tree
structure, even with about 100 training examples, candidates belonging to
the major parties are consistently grouped together indicating strong party
influence in voting behavior.

We compared the results between learning a general hierarchy (without
fixed k) and learning a 1-thin chain model on the Irish data. Figure 52b
shows the log-likelihoods achieved by both models on a held-out test set as
the training set size increases. For each training set size, we subsampled the
Irish dataset 100 times to produce confidence intervals. Again, even with
small sample sizes, the hierarchy outperforms the 1-chain and continually
improves with more and more training data. One might think that the
hierarchical models, which use more parameters are prone to overfitting,
but in practice, the models learned by our algorithm devote most of the
extra parameters towards modeling the correlations among the two major
parties. As our results suggest, such intraparty ranking correlations are
crucial for achieving good modeling performance.

Finally, we ran our structure learning algorithm on two similar but
smaller election datasets from the other constituencies in the 2002 election
which supported electronic voting, the Dublin North and West constituen-
cies. Figure 53 shows the resulting hierarchies learned from each dataset.
As with the Meath constituency, the Fianna Fáil and Fine Gael are consis-
tently grouped together in leaf sets in the Dublin datasets. Interestingly, the
Sinn Féin and Socialist parties are also consistently grouped in the Dublin
datasets, potentially indicating some latent similarities between the two
parties.
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Figure 52: Structure Discovery Experiments: Irish Election dataset

14.6 conclusion

Exploiting independence structure for efficient inference and low sample
complexity is a simple yet powerful idea, pervasive throughout the machine
learning literature, showing up in the form of Bayesian networks, Markov
random fields, and more. For rankings, independence can be problematic
due to mutual exlusivity constraints, and we began Chapter 13 by indicating
a need for a useful generalization of independence.

The main contribution of Chapters 13 and 14 is the definition of such a
generalized notion, namely, riffled independence. There are a number of
natural questions that immediately follow any such definition, such as:

• Does the generalization retain any of the computational advantages
of probabilistic independence?

• Can we find evidence that such generalized independence relations
hold (or approximately hold) in real datasets?

• Can we design scalable algorithms which can exploit the generalized
independence structure of a model?
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Figure 53: Learned hierarchies for Irish election data from Dublin (north) and
Dublin (west) constituencies

• If subsets of items in a ranking dataset indeed satisfy the generalized
independence assumption, or approximately so, how could we algo-
rithmically determine what these subsets should be from samples?

We have shown that for riffled independence, the answer to each of the
above questions lies in the affirmative. We next explored hierarchical rif-
fle independent decompositions. Our model, in which riffle independent
subsets are recursively chained together, leads to a simple, interpretable
model whose structure we can estimate from data, and we have successfully
applied our learning algorithms to several real datasets.

Currently, the success of our structure learning methods depends on the
existence of a fairly sizeable dataset of full rankings. However, ranking
datasets are more typically composed of partial or incomplete rankings,
which are often far easier to elicit from a multitude of users. For example,
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top-k type rankings, or even rating data (in which a user/judge provides
a rating of an item between, say, 1 and 5) are common. This problem of
extending our parameter and structure learning algorithms for handling
such partially ranked data is the topic of the next chapter.

Many other possible extensions are possible. In our work, we have
developed algorithms for estimating maximum likelihood parameters. For
small training set sizes, a Bayesian approach would be more appropriate,
where a prior is placed on the parameter space. However, if the prior
distribution ties parameters together (i.e., if the prior does not factor across
parameters), then the structure learning problem can be considerably more
complicated, since we would not be able to simply identify independence
relations.

Riffled independence is a new tool for analyzing ranked data and as we
have shown, has the potential to give new insights into ranking datasets.
We strongly believe that it will be crucial in developing fast and efficient
inference and learning procedures for ranking data, and perhaps other
forms of permutation data.
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E X P L O I T I N G R I F F L E D I N D E P E N D E N C E F O R
P R O B A B I L I S T I C I N F E R E N C E

WE have thus far developed a simple interpretable model based on
riffled independence relationships among ranked items. In Chap-

ters 13 and 14, we focused primarily on the representation problem, in which
we proposed simple and efficient algorithms for learning the structure and
parameters of such a hierarchical model.

In this chapter, we turn to the inference problem in the context of riffled
independence. While in Part II we argued that Fourier based representa-
tions are well suited to handling low-order observations involving small
subsets of items at a time, we will contend in this chapter that the struc-
tural assumption of riffled independence is particularly well suited to answering
probabilistic queries about partial rankings. We show in particular, that when
riffled independence assumptions are made about a prior distribution,
partial ranking observations decompose in a way that allows for efficient
conditioning.

The main contributions of our work are as follows:

• When items satisfy the riffled independence relationship, we show
that conditioning on partial rankings can be done efficiently, with
running time linear in the number of model parameters.

• We show that in general, it is impossible to exploit riffled indepen-
dence structure to efficiently condition on observations that do not
take the form of partial rankings.

• We propose the first algorithm that is capable of efficiently estimat-
ing the structure and parameters of riffle independent models from
heterogeneous collections of partially ranked data.

• We show results on real voting and preference data evidencing the
effectiveness of our methods.

15.1 decomposable observations

We first revisit the conditioning operation. Given a prior distribution, h,
over rankings and an observation O, recall Bayes rule (Equations 3.5),
which tells us that the posterior distribution, h(σ|O), is proportional to
L(O|σ) · h(σ), where L(O|σ) is the likelihood function. This operation of
conditioning h on an observation O is typically computationally intractable
since it requires multiplying two n! dimensional functions, unless one
can exploit structural decompositions of the problem. In this section, we
describe a decomposition for a certain class of likelihood functions over the
space of rankings in which the observations are ‘factored’ into simpler parts.

201
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When an observation O is decomposable in this way, we show that one
can efficiently condition a riffle independent prior distribution on O. For
simplicity in this chapter, we focus on subset observations whose likelihood
functions encode membership with some subset of rankings in Sn.

Definition 106 (Observations). A subset observation O is a binary observation
whose likelihood is proportional to the indicator function of some subset
of Sn.

As a running example, we will consider the class of first place observations
throughout the chapter. The first place observation O =“Corn is ranked
first”, for example, is associated with the collection of rankings placing
the item Corn in first place (O = {σ : σ(Corn) = 1}). We are interested in
computing h(σ|σ ∈ O). In the first place scenario, we are given a voter’s
top choice and we would like to infer his preferences over the remaining
candidates.

Given a partitioning of the item set Ω into two subsets A and B, it is
sometimes possible to decompose (or factor) a subset observation involv-
ing items in Ω into smaller subset observations involving A, B and the
interleavings of A and B independently. Such decompositions can often be
exploited for efficient inference.

Example 107.

• The first place observation

O = “Corn is ranked first”

can be decomposed into two independent observations — an observation on
the relative ranking of Vegetables,

OA = “Corn is ranked first among Vegetables”,

and an observation on the interleaving of Vegetables and Fruits,

OA,B = “First place is occupied by a Vegetable”.

To condition on O in this case, one updates the relative ranking distribution
over Vegetables (A) by zeroing out rankings of vegetables which do not place
Corn in first place, and updates the interleaving distribution by zeroing out
interleavings which do not place a Vegetable in first place, then normalizes
the resulting distributions.

• An example of a nondecomposable observation is the observation

O = “Corn is in third place”.

To see that O does not decompose (with respect to Vegetables and Fruits),
it is enough to notice that the interleaving of Vegetables and Fruits is not
independent of the relative ranking of Vegetables. If, for example, an element
σ ∈ O interleaves A (Vegetables) and B (Fruits) as τAB(σ) = A|B|A|B,
then since σ(Corn) = 3, the relative ranking of Vegetables is constrained to
be φA(σ) = Peas|Corn. Since the interleavings and relative rankings are
not independent, we see that O cannot be decomposable.
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Formally, we use riffle independent factorizations to define decompos-
ability with respect to a hierarchy H of the item set.

Definition 108 (Decomposability). Given a hierarchy H over the item set, a
subset observation O decomposes with respect to H if its likelihood function
L(O|σ) factors riffle independently with respect to H.

When subset observations and the prior decompose according to the
same hierarchy, we can show (as in Example 107) that the posterior also
decomposes.

Proposition 109. LetH be a hierarchy over the item set. Given a prior distribution
h and an observation O which both decompose with respect to H, the posterior
distribution h(σ|O) also factors riffle independently with respect to H.

Proof. Denote the likelihood function corresponding to O by L (in this proof,
it does not matter that O is assumed to be a subset observation and the
result holds for arbitrary likelihoods).

We use induction on the size of the item set n = |Ω|. The base case
n = 1 is trivially true. We next examine the general case where n > 1. The
posterior distribution, by Bayes rule, can be written h(σ|O) ∝ L(σ) · h(σ).
There are now two cases. If H is a leaf node, then the posterior h ′ trivially
factors according to H, and we are done. Otherwise, L and h both factor,
by assumption, according to H = (HA,HB) in the following way:

L(σ) = mL(τAB(σ)) · fL(φA(σ)) · gL(φB(σ)), and

h(σ) = mh(τAB(σ)) · fh(φA(σ)) · gh(φB(σ)).

Multiplying and grouping terms, we see that the posterior factors as:

h(σ|O) = [mL ·mh](τAB(σ)) · [fL · fh](φA(σ)) · [gL · gh](φB(σ)).

To show that h(σ|O) factors with respect to H, we need to demonstrate (by
Definition 91) that the distributions [fL · fh] and [gL · gh] (after normalizing)
factor with respect to HA and HB, respectively.

Since fL and fh both factor according to the hierarchy HA by assumption
and |A| < n since H is not a leaf, we can invoke the inductive hypothesis
to show that the posterior distribution, which is proportional to fL · fh
must also factor according to HA. Similarly, the distribution proportional
to gL · gh must factor ordering to HB.

In fact, we can show that when the prior and observation both decompose
with respect to the same hierarchy, inference operations can always be performed
in time linear in the number of model parameters.

15.2 complete decomposability

The condition of Proposition 109, that the prior and observation must
decompose with respect to exactly the same hierarchy is a sufficient one
for efficient inference, but it might at first glance seem so restrictive as
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to render the proposition useless in practice. To overcome this limitation
of “hierarchy specific” decomposability, we explore a special family of
observations (which we call completely decomposable) for which the property
of decomposability does not depend specifically on a particular hierarchy,
implying in particular that for these observations, efficient inference is
always possible (as long as efficient representation of the prior distribution
is also possible).

To illustrate how an observation can decompose with respect to multiple
hierarchies over the item set, consider again the first place observation
O =“Corn is ranked first”. We argued in Example 107 that O is a de-
composable observation. Notice however that decomposability for this
particular observation does not depend on how the items are partitioned
by the hierarchy. Specifically, if instead of Vegetables and Fruits, the sets
A = {Corn,Lemons} and B = {Peas,Oranges} are riffle independent, a
similar decomposition of O would continue to hold, with O decomposing as
an observation on the relative ranking of items in A (“Corn is first among
items in A”), and an observation on the interleaving of A and B (“First
place is occupied by some element of A”).

To formally capture this notion that an observation can decompose with
respect to arbitrary underlying hierarchies, we define complete decomposabil-
ity:

Definition 110 (Complete decomposability). We say that an observation
O is completely decomposable if it decomposes with respect to every possible
hierarchy over the item set Ω.

Finally, we denote the collection of all possible completely decomposable
observations as CRI. See Figure 54 for an illustration of the set CRI.

The property of complete decomposability is a guarantee for an observa-
tion O, that one can always exploit any available factorized structure of the
prior distribution in order to efficiently condition on O.

Proposition 111. Given a prior h which factorizes with respect to a hierarchy H,
and a completely decomposable observation O, the posterior h(σ|O) also decomposes
with respect to H and can be computed in time linear in the number of model
parameters of h.

Proof. Proposition 109 requires that the prior and likelihood decompose
with respect to the same hierarchy. However, the property of complete
decomposability means that the observation O decomposes with respect
to all hierarchies, and so we see that Proposition 111 follows as a simple
corollary to Proposition 109.

Example 112. The simplest example of a completely decomposable observation
is the uniform observation Ounif = SΩ, which includes all possible rankings
and corresponds to a uniform indicator function δunif over rankings. Given any
hierarchy H, δunif can be shown to decompose riffle independently with respect to
H, where each factor is also uniform, and hence Ounif is completely decomposable.
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Figure 54: A diagram illustrating CRI.

The uniform observation is of course not particularly interesting in the
context of Bayesian inference, but on the other hand, given the stringent
conditions in Definition 110, it is not obvious that nontrivial completely
decomposable observations can even exist. Nonetheless, there do exist
nontrivial examples (such as the first place observations), and in the next
section, we exhibit a rich and general class of completely decomposable
observations.

15.3 complete decomposability of partial ranking observa-
tions

In this section we discuss the mathematical problem of identifying all
completely decomposable observations. Our main contribution in this
section is to show that completely decomposable observations correspond exactly
to partial rankings of the item set.

partial rankings. We begin our discussion by introducing partial
rankings, which allow for items to be tied with respect to a ranking σ by
‘dropping’ verticals from the vertical bar representation of σ.

Definition 113 (Partial ranking observation). Let Ω1, Ω2,. . . , Ωk be an
ordered collection of subsets which partition Ω (i.e., ∪iΩi = Ω and Ωi ∩
Ωj = ∅ if i 6= j). The partial ranking observation1 corresponding to this
partition is the collection of rankings which rank items in Ωi before items

1 As in [1], we note that “The term partial ranking used here should not be confused with two
other standard objects: (1) Partial order, namely, a reflexive, transitive anti-symmetric binary
relation; and (2) A ranking of a subset of Ω . In search engines, for example, although only
the top-k elements of Ω are returned, the remaining n− k are implicitly assumed to be
ranked behind.”

[ August 4, 2011 at 11:32 ]



206 exploiting riffled independence for probabilistic inference

in Ωj if i < j. We denote this partial ranking as Ω1|Ω2| . . . |Ωk and say that
it has type γ = (|Ω1|, |Ω2|, . . . , |Ωk|).

We denote the collection of all partial rankings (over n items) as P.

Each partial ranking as defined above can be viewed as a coset of the
subgroup Sγ = Sγ1 × Sγ2 × · · · × Sγk (see also Section 2.4). Given the type
γ and any full ranking π ∈ SΩ, there is only one partial ranking of type γ
containing π, thus we will therefore equivalently denote the partial ranking
Ω1|Ω2| . . . |Ωk as Sγπ, where π is any element of Ω1|Ω2| . . . |Ωk. Note that
this coset notation allows for multiple rankings σ to refer to the same partial
ranking Sγσ.

The space of partial rankings as defined above captures a rich and natural
class of observations. In particular, partial rankings encompass a number of
commonly occurring special cases, which have traditionally been modeled
in isolation, but in our work (as well as recent works such as [86, 84]) can
be used in a unified setting.

Example 114. Partial rankings observations include:

• (First place, or Top-1 observations): First place observations correspond to
partial rankings of type γ = (1,n− 1). The observation that Corn is ranked
first can be written as Corn|Peas,Lemons,Oranges.

• (Top-k observations): Top-k observations are partial rankings with type
γ = (1, . . . , 1,n− k). These generalize the first place observations by spec-
ifying the items mapping to the first k ranks, leaving all n− k remaining
items implicitly ranked behind.

• (Desired/less desired dichotomy): Partial rankings of type γ = (k,n−

k) correspond to a subset of k items being preferred or desired over the
remaining subset of n − k items. For example, partial rankings of type
(k,n− k) might arise in approval voting in which voters mark the subset
of “approved” candidates, implicitly indicating disapproval of the remaining
n− k candidates.

To show how partial rankings observations decompose, we will exhibit
an explicit factorization with respect to a hierarchy H over items. For
simplicity, we begin by considering the single layer case, in which the items
are partitioned into two leaf sets A and B. Our factorization depends on
the following notions of consistency of relative rankings and interleavings
with a partial ranking.

Definition 115 (Restriction consistency). Given a partial ranking Sγπ =

Ω1|Ω2| . . . |Ωk and any subset A ⊂ Ω, we define the restriction of Sγπ to A
as the partial ranking on items in A obtained by intersecting each Ωi with
A. Hence the restriction of Sγπ to A is:

[Sγπ]A = Ω1 ∩A|Ω2 ∩A| . . . |Ωk ∩A.

Given a ranking, σA of items in A, we say that σA is consistent with the
partial ranking Sγπ if σA is a member of [Sγπ]A.
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Definition 116 (Interleaving consistency). Given an interleaving τAB of
two sets A,B which partition Ω, we say that τAB is consistent with a partial
ranking Sγπ = Ω1| . . . |Ωk (with type γ) if the first γ1 entries of τAB
contain the same number of As and Bs as Ω1, and the second γ2 entries
of τAB contain the same number of As and Bs as Ω2, and so on. Given a
partial ranking Sγπ, we denote the collection of consistent interleavings as
[Sγπ]AB.

For example, consider the partial ranking

Sγπ = Corn,Lemons|Peas,Oranges,

which places a single vegetable and a single fruit in the first two ranks, and
a single vegetable and a single fruit in the last two ranks. Alternatively, Sγπ
partially specifies an interleaving AB|AB. The full interleavings A|B|B|A
and B|A|B|A are consistent with Sγπ (by dropping vertical lines) while
A|A|B|B is not consistent (since it places two vegetables in the first two
ranks).

Using the notions of consistency with a partial ranking, we show that
partial ranking observations are decomposable with respect to any binary
partitioning (i.e., single layer hierarchy) of the item set.

Proposition 117 (Single layer hierarchy). For any partial ranking observation
Sγπ and any binary partitioning of the item set (A,B), the indicator function of
Sγπ, δSγπ, factors riffle independently as:

δSγπ(σ) = mAB(τAB(σ)) · fA(φA(σ)) · gB(φB(σ)), (15.1)

where the factors mAB, fA and gB are the indicator functions for consistent
interleavings and relative rankings, [Sγπ]AB, [Sγπ]A and [Sγπ]B, respectively.

The single layer decomposition of Proposition 117 can be turned into
a recursive decomposition for partial ranking observations over arbitrary
binary hierarchies, which establishes our main result. In particular, given a
partial ranking Sγπ and a prior distribution which factorizes according to
a hierarchy H, we first condition the topmost interleaving distribution by
zeroing out all parameters corresponding to interleavings which are not
consistent with Sγπ, and normalizing the distribution.

We then need to condition the subhierarchies HA and HB on relative
rankings of A and B which are consistent with Sγπ, respectively. Since
these consistent sets, [Sγπ]A and [Sγπ]B, are partial rankings themselves,
the same algorithm for conditioning on a partial ranking can be applied
recursively to each of the subhierarchies HA and HB.

Theorem 118. Every partial ranking is completely decomposable (P ⊂ CRI).

To prove Theorem 118 (as well as later results), we will refer to rank sets.

Definition 119. Given a partial ranking of type γ, we denote the rank
set occupied by Ωi by Rγi . Note that Rγi depends only on γ and can be
written as Rγ1 = {1, . . . ,γ1}, R

γ
2 = {γ1+1, . . . ,γ1+γ2}, . . . , Rγk = {

∑k−1
i=1 γi+

1, . . . ,n}.
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And we will refer to the following basic fact regarding rank sets:

Proposition 120. σ ∈ Sγπ = Ω1| . . . |Ωk if and only if for each i, σ(Ωi) = R
γ
i .

Proof. (of Theorem 118) We use induction on the size of the itemset. The
cases n = 1, 2 are trivial since every distribution on S1 or S2 factors riffle
independently. We now consider the more general case of n > 2.

Fix a partial ranking Sγπ = Ω1|Ω2| . . . |Ωk of type γ and a binary parti-
tion of the item set into subsets A and B. We will show that the indicator
function δSγπ factors as:

δSγπ(σ) = m(τAB(σ)) · f(φA(σ)) · g(φB(σ)), (15.2)

where factors m, f and g are the indicator functions for the set of consistent
interleavings, [Sγσ]AB, and the sets of consistent relative rankings, [Sγσ]A
and [Sγσ]B, respectively. If Equation 15.2 is true, then we will have shown
that δSγπ must decompose with respect to the top layer of H. To show
that δSγπ decomposes hierarchically, we must also show that the relative
ranking factors fA and gB decompose with respect to HA and HB, the
subhierarchies over the item sets A and B. To establish this second step
(assuming that Equation 15.2 holds), note that fA and gB are indicator
functions for the restricted partial rankings, [Sγσ]A and [Sγσ]B, which
themselves are partial rankings over smaller item sets A and B. The in-
ductive hypothesis (and the fact that A and B are assumed to be strictly
smaller sets than Ω) then shows that the functions fA and gB both factor
according to their respective subhierarchies.

We now turn to establishing Equation 15.2. It suffices to prove that the
following two statements are equivalent:

I. The ranking σ is consistent with the partial ranking Sγπ (i.e., σ ∈ Sγπ).

II. The following three conditions hold:

a) The interleaving τAB(σ) is consistent with Sγπ (i.e., τAB(σ) ∈
[Sγπ]AB), and

b) The relative ranking φA(σ) is consistent with Sγπ (i.e., φA(σ) ∈
[Sγπ]A), and

c) The relative ranking φB(σ) is consistent with Sγπ (i.e., φB(σ) ∈
[Sγπ]B).

• (I⇒ II): We first show that σ ∈ Sγπ implies conditions (a), (b) and
(c).

(a) If σ ∈ Sγπ, then for each i,

|j ∈ Rγi : τ−1AB(j) ∈ A| = |j ∈ Rγi : σ−1(j) ∈ A|,
(by Definition 82)

= |k ∈ Ωi : k ∈ A|,
(by Proposition 120)

= |Ωi ∩A|.
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The same argument (replacing A with B) shows that for each i,
we have |j ∈ Rγi : τAB(j) = 1| = |Ωi ∩ B|. These two conditions
(by Definition 116) show that τAB is consistent with Sγπ.

(b) If σ ∈ Sγπ, then (by Definition 113) σ ranks items in Ωi before
items in Ωj for any i < j. Intersecting each Ωi with A, we also
see that σ ranks any item in Ωi ∩A before any item in Ωj ∩A
for all i, j. By Definition 82, φA(σ) also ranks any item in Ωi ∩A
before any item inΩj∩A for all i, j. And finally by Definition 116

again, we see that φA(σ) is consistent with the partial ranking
Sγπ = Ω1 ∩A| . . . |Ωk ∩A.

(c) (Same argument as (b)).

• (II ⇒ I): We now assume conditions (a), (b), and (c) to hold, and
show that σ ∈ Sγπ. By Proposition 120 it is sufficient to show that
if an item k ∈ Ωi, then σ(k) ∈ Rγi . To prove this claim, we show
by induction on i that if an item k ∈ Ωi ∩A, then σ(k) ∈ Rγi (and
similarly if k ∈ Ωi ∩B, then σ(k) ∈ Rγi ).

Base case. In the base case (i = 1), we assume that k ∈ Ω1 ∩A, and
the goal is to show that σ(k) ∈ R1. By condition (a), we have that
τAB(σ) ∈ [Sγπ]AB. By Definition 116, this means that: |Ω1 ∩A| = {j ∈
R1 : [τ−1AB(σ)](j) ∈ A} = {j ∈ R1 : σ−1(j) ∈ A}. In words, there are
m = |Ω1 ∩A| items from A which lie in rank set R1 = {1, . . . ,γ1}.
To show that an item k ∈ A maps to a rank in R1, we now must
show that in the relative ranking of elements in A, k is among the
first m. By condition (b), φA(σ) ∈ [Sγπ]A, implying that the item
subset Ω1 ∩A occupy the first m positions in the relative ranking
of A. Since k ∈ Ω1 ∩A, item k is among the first m items ranked
by φA(σ) and therefore σ(k) ∈ R1. A similar argument shows that
k ∈ Ω1 ∩B implies that σ(k) ∈ R1.

Inductive case. We now show that if k ∈ Ωi ∩ A, then σ(k) ∈ Ri.
By condition (b), φA(σ) ∈ [Sγπ]A, implying that the item subset
Ωi ∩A (and hence, item k) occupies the first m = |Ωi ∩A| positions
in the relative ranking of A beyond the items ∪i−1j=1(Ωj ∩A). By the
inductive hypothesis and mutual exclusivity, these items, together
with ∪i−1j=1(Ωj ∩ B) occupy ranks ∪i−1j=1Rj, and therefore σ(k) ∈ R`
for some ` > i. On the other hand, condition (a) assures us that
|Ωi ∩A| = {j ∈ Ri : σ−1(j) ∈ A} — or in other words, that the ranks in
Ri are occupied by exactly m items of A. Therefore, σ(k) ∈ Ri. Again,
a similar argument shows that k ∈ Ωi ∩B implies that σ(k) ∈ Ri.

See Algorithm 15.1 for details on our recursive conditioning algorithm.
As a consequence of Theorem 118 and Proposition 111, conditioning on
partial ranking observations can be performed in linear time with respect
to the number of model parameters.

[ August 4, 2011 at 11:32 ]



210 exploiting riffled independence for probabilistic inference

Algorithm 15.1: Pseudocode for prcondition, an algorithm for recursively
conditioning a hierarchical riffle independent prior distribution on partial ranking
observations. See Definitions 115 and 116 for [Sγσ]A, [Sγσ]B, and [Sγσ]AB. The
runtime of prcondition is linear in the number of model parameters. Input: All
parameter distributions of the prior hprior represented in explicit tabular form,
and an observation Sγπ in the form of a partial ranking. Output: All parameter
distributions of the posterior hpost represented in explicit tabular form.

prcondition (Prior hprior, Hierarchy H, Observation Sγπ = Ω1|Ω2| . . . |Ωk)
if isLeaf(H) then

forall σ do

hpost(σ)←

{
hprior(σ) if σ ∈ Sγπ

0 otherwise
;

end
Normalize (hpost) ;
return (hpost);

end
else

forall τ do

mpost(τ)←

{
mprior(τ) if τ ∈ [Sγπ]AB

0 otherwise
;

end
Normalize (mpost) ;
f(φA)←prcondition (fprior,HA, [Sγπ]A) ;
g(φB)←prcondition (gprior,HB, [Sγπ]B) ;
return (mpost, fpost,gpost);

end

15.3.1 An impossibility result

It is interesting to consider what completely decomposable observations
exist beyond partial rankings. One of our main contributions is to show
that there are no such observations.

Theorem 121 (Converse of Theorem 118). Every completely decomposable
observation takes the form of a partial ranking (CRI ⊂ P).

Together, Theorems 118 and 121 form a significant insight into the nature
of rankings, showing that the notions of partial rankings and complete
decomposability exactly coincide. In fact, our result shows that it is even
possible to define partial rankings via complete decomposability!

As a practical matter, our results show that there is no algorithm based on
simple multiplicative updates to the parameters which can exactly condition
on observations which do not take the form of partial rankings. If one is
interested in conditioning on such observations, Theorem 121 suggests that
a slower or approximate inference approach might be necessary.

15.3.2 Proof of the impossiblity result (Theorem 121)

We now turn to proving Theorem 121. Since this proof is significantly
longer than the one for its converse, we sketch the main ideas that drive
the proof and refer interested readers to details in Appendix F.
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Recall that the definition of the linear span of a set of vectors in a vector
space is the intersection of all linear subspaces containing that set of vectors.
To prove Theorem 121, we introduce analogous concepts of the span of a
set of rankings.

Definition 122 (rspan and pspan). Let X ⊂ Sn be any collection of rankings.
We define pspan(X) to be the intersection of all partial rankings containing
X. Similarly, we define rspan(X) to be the intersection of all completely
decomposable observations containing X. More formally,

pspan(X) =
⋂

Sγσ:X⊂Sγσ
Sγσ, and

rspan(X) =
⋂

O:X⊂O, O∈CRI

O.

Our proof strategy is to establish two claims: (1) that the pspan of any
set is always a partial ranking, and (2) that in fact, the rspan and pspan

of a set X are exactly the same sets. Since claim (1) is a fact about partial
rankings and does not involve riffled independence, we defer all related
proofs to the appendix. Thus we have:

Lemma 123. For any X ⊂ Sn, pspan(X) is a partial ranking.

Proof. See Appendix.

The following discussion will instead sketch proofs of claim (2). If claims
(1) and (2) indeed hold, we first show that Theorem 121 must hold.

Proof. (of Theorem 121): Let O ∈ CRI and let X = O. We have O = rspan(O).
Since rspan(X) = pspan(X) by claim (2),we have that X = pspan(X). By
Lemma 178, we know that pspan(X) is a partial ranking, and therefore
X = O must also be a partial ranking.

We now proceed to establish the claim that rspan(X) = pspan(X). The
following proposition lists several basic properties of the rspan that we
will use in several of the proofs. They all follow directly from definition so
we do not write out the proofs.

Proposition 124.

I. (Monotonicity) For any X, X ⊂ rspan(X).
II. (Subset preservation) For any X,X ′ such that X ⊂ X, rspan(X) ⊂ rspan(X ′).

III. (Idempotence) For any X, rspan(rspan(X)) = rspan(X).

One inclusion follows directly from the fact that P ⊂ CRI (Theorem: 118):

Lemma 125. For any subset of orderings, X, rspan(X) ⊂ pspan(X).

Proof. Lemma 125 follows almost directly from the fact that P ⊂ CRI

(Theorem 118). Fix a subset X ⊂ Sn and let π be any element of rspan(X).
Consider any partial ranking indicator function δ ∈ P such that δ(σ) > 0
for all σ ∈ X. We want to see that δ(π) > 0. By Theorem 118, δ ∈ CRI.
Moreover, since π ∈ rspan(X), and δ(σ) > 0 for all σ ∈ X, we conclude that
δ(π) > 0 (by Definition 122).
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Algorithm 15.2: Pseudocode for computing pspan(X). formPspan(X) takes a
set of partial rankings (or full rankings) X as input and outputs a partial ranking.
This algorithm iteratively deletes vertical bars from elements of X until they are in
agreement. Note that it is not necessary to keep track of t, but we do so here to
ease notation in the proofs. Nor is this algorithm the most direct way of computing
pspan(X), but again, it simplifies the proof of our main theorem.

formPspan(X)
X0 ← X; t← 0;
while ∃Sγπ,Sγ′π ′ ∈ Xt which disagree on the relative ordering of items a1,a2 do

Xt ← ∅ ;
foreach Sγσ ∈ Xt do

Add any partial ranking obtained by deleting a vertical bar from Sγσ

between items a1 and a2 to Xt;
end
t← t+ 1;

end
return (any element of Xt) ;

We now consider the problem of computing the partial ranking span
(pspan) of a given set of rankings X. In Algorithm 15.2, we show a simple
procedure that provably outputs the correct result.

Proposition 126. Given a set of rankings X as input, Algorithm 15.2 outputs
pspan(X).

Proof. See Appendix.

As a final step before being able to prove our second main claim, that
rspan(X) = pspan(X) for any X, we prove the following two technical
lemmas about Algorithm 15.2 which form the heart of our argument. In
particular, for a completely decomposable observation O ∈ CRI, Lemma 127

below shows a ranking contained in O can “force” other rankings to be
contained in O.

Lemma 127. Let O ∈ CRI and suppose there exist π1,π2 ∈ Sn which disagree
on the relative ranking of items i, j ∈ Ω such that π1,π2 ∈ O. Then the ranking
obtained by swapping the relative ranking of items i, j within any π3 ∈ O must
also be contained in O.

Proof. Let h be the indicator distribution corresponding to the observation
O. We will show that swapping the relative ranking of items i, j in π3
will result in a ranking which is assigned nonzero probability by h, thus
showing that this new ranking is contained in O.

Let A = {i, j} and B = Ω\A. Since O ∈ CRI, h must factor riffle indepen-
dently according to the partition (A,B). Thus,

h(π1) = m(τAB(π1)) · f(φA(π1)) · g(φB(π1)) > 0, and

h(π2) = m(τAB(π2)) · f(φA(π2)) · g(φB(π2)) > 0.

Since π1 and π2 disagree on the relative ranking of items in A, this factor-
ization implies in particular that both f(φA = i|j) > 0 and f(φA = j|i) > 0.
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Since h(π3) > 0, it must also be that each of m(τAB(π3)), f(φA(π3)), and
g(φB(π3)) have positive probability. We can therefore swap the relative
ranking of A, φA, to obtain a new ranking which has positive probability
since all of the terms in the decomposition of this new ranking have positive
probability.

Lemma 128 provides conditions under which removing a vertical bar
from one of the rankings in X will not change the support of a completely
riffle independent distribution. The key strategy in this proof is to argue
that large subsets of rankings must be contained in a completely decom-
posable observation O by decomposing rankings into transpositions (using
Lemma 8) and invoking the technical lemma from above (Lemma 127)
repeatedly.

Lemma 128. Let Sγπ = Ω1| . . . |Ωi|Ωi+1| . . . |Ωk be a partial ranking on item
set Ω, and Sγ ′π ′ = Ω1| . . . |Ωi ∪Ωi+1| . . . |Ωk, the partial ranking in which the
setsΩi andΩi+1 are merged. Let a1 ∈ ∪ij=1Ωj and a2 ∈ ∪kj=i+1Ωj. If O is any
element of CRI such that Sγπ ⊂ O and there additionally exists a ranking π̃ ∈ O

which disagrees with Sγπ on the relative ordering of a1,a2, then Sγ ′π ′ ⊂ O.

Proof. See Appendix.

Recall that Lemma 125 showed that rspan(X) ⊂ pspan(X). We now use
Lemma 128 to show the reverse inclusion also holds, establishing that the
two sets are in fact equal and therefore proving the desired result, that
CRI ⊂ P.

Proposition 129. For any subset of orderings, X, rspan(X) ⊃ pspan(X).

Proof. At each iteration t, Algorithm 15.2 produces a set of partial rank-
ings, Xt. We denote the union of all partial rankings at time t as X̃t ≡⋃
Sγσ∈Xt Sγσ. Note that X̃0 = X and X̃T = pspan(X). The idea of our proof

will be to show that at each iteration t, the following set inclusion holds:
rspan(X̃t) ⊂ rspan(X̃t−1). If indeed this holds, then after the final iteration
T , we will have shown that:

pspan(X) = X̃T , (Proposition 126)

⊂ rspan(X̃T ),

(Monotonicity, Proposition 124)

⊂ rspan(X̃0),

(rspan(X̃t) ⊂ rspan(X̃t−1), shown below),

⊂ rspan(X) (X̃0 = X, see Algorithm 15.2)

which would prove the Proposition.
It remains now to show that rspan(X̃t) ⊂ rspan(X̃t−1). We claim

that X̃t ⊂ rspan(X̃t−1). Let σ ∈ X̃t. If σ ∈ X̃t−1, then since X̃t−1 ⊂
rspan(X̃t−1), we have σ ∈ rspan(X̃t−1) and the proof is done. Otherwise,
σ ∈ X̃t\X̃t−1. In this second case, we use the fact that at iteration t, the
vertical bar between Ωi and Ωi+1 was deleted from the partial ranking
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Sγπ = Ω1| . . . |Ωi|Ωi+1| . . . |Ωk (which is a subset of X̃t−1) to form the
partial ranking Sγ ′π ′ = Ω1| . . . |Ωi ∪Ωi+1| . . . |Ωk. (which is a subset of
X̃t). Furthermore, in order for the vertical bar to have been deleted by the
algorithm, there must have existed some partial ranking (and therefore
some full ranking ω ′) that disagreed with Sγπ on the relative ordering of
items a1,a2 on opposite sides of the bar. Since σ ∈ X̃t\X̃t−1 we can assume
that σ ∈ Sγ ′π ′.

We now would like to apply Lemma 128. Note that for any O ∈ CRI such
that X̃t−1 ⊂ O, we also have Sγπ ⊂ O, since Sγπ ⊂ X̃t−1. An application of
Lemma 128 then shows that Sγ ′π ′ ⊂ O and therefore that σ ∈ O.

We have shown in fact that σ ∈ O holds for any O ∈ CRI such that X̃t−1 ⊂
O, and therefore taking the intersection of supports over all O ∈ CRI, we
see that X̃t ⊂ rspan(X̃t−1). Taking the rspan of both sides yields:

rspan(X̃t) ⊂ rspan(rspan(X̃t−1)),

(Subset preservation, Proposition 124)

⊂ rspan(X̃t−1).

(Idempotence, Proposition 124)

15.4 model estimation from partially ranked data

In many ranking based applications, datasets are predominantly composed
of partial rankings rather than full rankings due to the fact that for humans,
partial rankings are typically easier and faster to specify. In addition, many
datasets are heterogenous, containing partial ranking of different types.
For example, in Irish House of Parliament elections, voters are allowed
to specify their top-k candidate choices for any value of k (see Figure 56).
In this section we use the efficient inference algorithm proposed in Sec-
tion 15.3 for estimating a riffle independent model from partially ranked
data. Because estimating a model using partially ranked data is typically
considered to be more difficult than estimating one using only full rankings,
a common practice (see for example [55]) has been to simply ignore the
partial rankings in a dataset. The ability of a method to incorporate all
of the available data however, can lead to significantly improved model
accuracy as well as wider applicability of that method. In this section, we
propose the first efficient method for estimating the structure and parameters of
a hierarchical riffle independent model from heterogeneous datasets consisting of
arbitrary partial ranking types. Central to our approach is the idea that given
someone’s partial preferences, we can use the efficient algorithms devel-
oped in the previous section to infer his full preferences and consequently
apply previously proposed algorithms which are designed to work with
full rankings.

censoring interpretations of partial rankings. The model
estimation problem for full rankings is stated as follows. Given i.i.d. train-
ing examples σ(1), . . . ,σ(m) (consisting of full rankings) drawn from a
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hierarchical riffle independent distribution h, recover the structure and
parameters of h.

In the partial ranking setting, we again assume i.i.d. draws, but that each
training example σ(i) undergoes a censoring process producing a partial
ranking consistent with σ(i). For example, censoring might only allow
for the ranking of the top-k items of σ(i) to be observed. While we allow
for arbitrary types of partial rankings to arise via censoring, we make a
common assumption that the partial ranking type resulting from censoring
σ(i) does not depend on σ(i) itself.

algorithm . We treat the model estimation from partial rankings prob-
lem as a missing data problem. As with many such problems, if we could
determine the full ranking corresponding to each observation in the data,
then we could apply algorithms which work in the completely observed
data setting. Since full rankings are not given, we utilize an Expectation-
Maximization (EM) approach in which we use inference to compute a
posterior distribution over full rankings given the observed partial ranking.
In our case, we then apply the algorithms from [55, 56] which were de-
signed to estimate the hierarchical structure of a model and its parameters
from a dataset of full rankings.

Given an initial model h, our EM-based approach alternates between the
following two steps until convergence is achieved.

• (E-step): For each partial ranking, Sγπ, in the training examples, we
use inference to compute a posterior distribution over the full ranking
σ that could have generated Sγπ via censoring, h(σ|O = Sγπ). Since
the observations take the form of partial rankings, we use the efficient
algorithms in Section 15.3 to perform the E-step.

• (M-step): In the M-step, one maximizes the expected log-likelihood
of the training data with respect to the model. When the hierarchical
structure of the model has been provided, or is known beforehand,
our M-step can be performed using standard methods for optimizing
parameters. When the structure is unknown, we use a structural EM
approach, which is analogous to methods from the graphical models
literature for structure learning from incomplete data [39, 40].

Unfortunately, the (riffled independence) structure learning algorithm
of [55] is unable to directly use the posterior distributions computed
from the E-step. Instead, observing that sampling from riffle inde-
pendent models can be done efficiently and exactly (as opposed to,
for example, MCMC methods), we simply sample full rankings from
the posterior distributions computed in the E-step and pass these full
rankings into the structure learning algorithm of [55]. The number of
samples that are necessary, instead of scaling factorially, scales accord-
ing to the number of samples required to detect riffled independence
(which under mild assumptions is polynomial in n, [55]).
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Figure 55: Histogram of top-k ballot lengths in the APA election data. Over half of
voters provide only their top-3 or top-4 choices

15.5 experiments

We demonstrate our algorithms on simulated data as well as real datasets
taken from different domains.

In addition to roughly 5000 full rankings, the APA dataset has over 10,000

top-k rankings of 5 candidates. In previous chapters, we had used only the
full rankings of the APA data, but now we are able to use the entire dataset.
Figure 55 plots, for each k ∈ {1, . . . , 5}, the number of ballots in the Meath
data of length k.

Likewise, the Meath dataset [44] which was taken from the 2002 Irish
Parliament election has over 60,000 top-k rankings of 14 candidates. As
with the APA data, we had used only the full rankings of the Meath
data in previous chapters, but here we use the entire dataset. Figure 56

plots, for each k ∈ {1, . . . , 14}, the number of ballots in the Meath data of
length k. In particular, note that the vast majority of ballots in the dataset
consist of partial rather than full rankings. We can run inference on over
5000 top-k examples for the Meath data in 10 seconds on a dual 3.0 GHz
Pentium machine with an unoptimized Python implementation. Using
‘brute force’ inference, we estimate that the same job would require roughly
one hundred years.

We extracted a third dataset from a database of searchtrails collected
by [134], in which browsing sessions of roughly 2000 users were logged
during 2008-2009. In many cases, users are unlikely to read articles about
the same story twice, and so it is often possible to think of the order
in which a user reads through a collection of articles as a top-k ranking
over articles concerning a particular story/topic. The ability to model
visit orderings would allow us to make long term predictions about user
browsing behavior, or even recommend ‘curriculums’ over articles for users.
We ran our algorithms on roughly 300 visit orderings for the eight most
popular posts from www.huffingtonpost.com concerning ‘Sarah Palin’, a
popular subject during the 2008 U.S. presidential election. Since no user
visited every article, there are no full rankings in the data and thus the
method of ‘ignoring’ partial rankings does not work.
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Figure 56: Histogram of top-k ballot lengths in the Irish election data. Over half of
voters provide only their top-3 or top-4 choices

apa structure learning results . We now complete our long run-
ning APA dataset example. Because of the large number of full rankings
in the APA data, we subsampled a dataset of 300 training examples from
the complete APA dataset. Performed structure learning using only the
full rankings of these 300 training examples, one obtains the structure in
Figure 57a, which can be seen to not match the ‘correct’ structure of Fig-
ure 39 which was learned using 5000 full rankings. Figures 57b and 57c plot
the results of our EM algorithm with the former showing the result after
just a single EM iteration and the latter showing the result after structural
convergence, which occurs by the third iteration, showing that our method
can learn the ‘correct’ structure given 300 training examples.

We compared our EM algorithm against two alternative approaches that
we call FlatEM and Uniform Fill-in. The FlatEM algorithm is the same as
the EM algorithm above except for two details: (1) it performs conditioning
exhaustively instead of exploiting the factorized model structure, and (2)
it performs the M-step without sampling. The Uniform Fill-in approach
treats every top-k ranking in the tranining set as a uniform collection of
votes for all of the full rankings consistent with that top-k ranking, and is
accomplished by using just one iteration of our EM algorithm.

In Figure 58a we plot test set loglikelihoods corresponding to each
approach, with EM and FlatEM having almost identical results and both
performing much better than the Uniform Fill-in approach. On the other
hand, Figure 58b which plots running times shows that FlatEM can be
far more costly (for most datasets, it cannot even be run in a reasonable
amount of time).

To verify that partial rankings do indeed make a difference in the APA
data, we plot the results of estimating a model from the subsets of APA
training data consisting of top-k rankings with length larger than some
fixed k. Figures 58c and 58d show the likelihood and running times for
k = 0, 1, 2, 3 with k = 0 being the entire training set and k = 3 being the
subset of training data consisting only of full rankings. As our results show,
including partial rankings does indeed help on average for improving test
log-likelihood (with diminishing returns).

[ August 4, 2011 at 11:32 ]



218 exploiting riffled independence for probabilistic inference

{12345}

{2345}{2}

{345}{1}

{45}{3}

(a) Structure learned using
only the subset of full
rankings (out of the 300

given training examples)

{12345}

{2345}{2}

{345}{1}

{34}{5}

(b) Structure learned using
all training examples af-
ter 1 iteration of EM

{12345}

{1345} {2}

{13} {45}

Clinical

Community 
psychologists

Research

(c) Structure learned using
all training examples af-
ter structural convergence
(3 iterations)

Figure 57: Structure learning with a subset of the APA dataset (300 rankings,
randomly sampled)
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Figure 58: APA experimental results — each experiment repeated with 200 bootstrapped
resamplings of the data

structure discovery with em with larger n . In all experiments,
we initialize distributions to be uniform, and do not use random restarts.
Our experiments have led to several observations about using EM for
learning with partial rankings. First, we observe that typical runs converge
to a fixed structure quickly, with no more than three EM iterations. Fig-
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Figure 59: Iterations of Structure EM for the Sarah Palin data with structural
changes at each iteration highlighted in red. This figure is best viewed
in color.
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Figure 60: Synthetic data results

ure 59 shows the progress of EM on the Sarah Palin data, whose structure
converges by the third iteration. As expected, the log-likelihood increases
at each iteration, and we remark that the structure becomes more inter-
pretable — for example, the leaf set {0, 2, 3} corresponds to the three posts
about Palin’s wardrobe before the election, while the posts from the leaf set
{1, 4, 6} were related to verbal gaffes made by Palin during the campaign.

Secondly, the number of EM iterations required to reach convergence
in log-likelihood depends on the types of partial rankings observed. We
ran our algorithm on subsets of the Meath dataset, each time training on
m = 2000 rankings all with length larger than some fixed k. Figure 60a
shows the number of iterations required for convergence as a function
of k (with 20 bootstrap trials for each k). We observe fastest convergence
for datasets consisting of almost-full rankings and slowest convergence
for those consisting of almost-empty rankings, with almost 25 iterations
necessary if one trains using rankings of all types. Finally we remark that
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Figure 61: Density estimation from small (5000 examples) and large subsets (25000

examples) of the Meath data. We compare our method against [86]
training (1) on all available data and (2) on the subset of full rankings.

the model obtained after the first iteration of EM is interesting and can
be thought of as the result of pretending that each voter is completely
ambivalent regarding the n− k unspecified candidates.

the value of partial rankings. We now show that using partial
rankings in addition to full rankings allows us to achieve better density
estimates. We first learned models from synthetic data drawn from a
hierarchy, training using 343 full rankings plus varying numbers of partial
ranking examples (ranging between 0-64,000). We repeat each setting with
20 bootstrap trials, and for evaluation, we compute the log-likelihood of
a testset with 5000 examples. For speed, we learn a structure H only once
and fix H to learn parameters for each trial. Figure 60b, which plots the
test log-likelihood as a function of the number of partial rankings made
available to the training set, shows that we are indeed able to learn more
accurate distributions as more and more data are made available.

comparing to a nonparametric model. Comparing the perfor-
mance of riffle independent models to other approaches was not possible
in previous chapters since we had not been able to handle partial rankings.
Using the methods developed in this chapter, however, we compare riffle
independent models with the state-of-the-art nonparametric Lebanon-Mao
(LM08) estimator of [86] on the same data (setting their regularization
parameter to be C =1,2,5, or 10 via a validation set). Figure 60b shows
(naturally) that when the data are drawn synthetically from a riffle inde-
pendent model, then our EM method significantly outperforms the LM08

estimator.
For the Meath data, which is only approximately riffle independent, we

trained on subsets of size 5,000 and 25,000 (testing on remaining data). For
each subset, we evaluated our EM algorithm for learning a riffle indepen-
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dent model against the LM08 estimator when (1) using only full ranking
data, and (2) using all data. As before, both methods do better when partial
rankings are made available.

For the smaller training set, the riffle independent model performs as
well or better than the LM’08 estimator. For the larger training set of 25,000,
we see that the nonparametric method starts to perform slightly better on
average, the advantage of a nonparametric model being that it is guaranteed
to be consistent, converging to the correct model given enough data. The
advantage of riffle independent models, however, is that they are simple,
interpretable, and can highlight global structures hidden within the data.

15.6 conclusion

In probabilistic reasoning problems, it is often the case that certain data
types suggest certain distribution representations. For example, sparse
dependency structure in the data often suggests a Markov random field (or
other graphical model) representation [39, 40]. For low-order permutation
observations (depending on only a few items at a time), we have shown (in
Part II) that a Fourier domain representation is appropriate. Our work in
this chapter shows, on the other hand, that when the observed data takes
the form of partial rankings, then hierarchical riffle independent models
are a natural representation.

As with conjugate priors, we showed that a riffle independent model is
guaranteed to retain its factorization structure after conditioning on a par-
tial ranking (which can be performed in linear time). Most surprisingly, our
work shows that observations which do not take the form of partial rank-
ings are not amenable to simple multiplicative update based conditioning
algorithms. Finally, we showed that it is possible to learn hierarchical riffle
independent models from partially ranked data, significantly extending
the applicability of previous work.

An interesting future research direction along these lines is to consider
what approximations might be appropriate for conditioning riffle indepen-
dent priors on non-partial ranking observations. Perhaps a discouraging
conclusion for our study is that, despite being so ubiquitous, pairwise
comparisons are not decomposable with respect to every riffle independent
model. Further work is necessary to investigate whether, for example, a sin-
gle fruit can be compared to a single vegetable, even if approximately. For
models that are not riffle independent but are used in applications in which
we care about partial ranking inference, we believe that the framework
developed in this chapter could be used as a principled approximation.
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R E L AT E D W O R K

WHILE our definition of riffled independence is original, many parts
of our work in Part III draw from a variety of different literatures,

such as card shuffling research due primarily to Persi Diaconis and collabo-
rators [11, 41], papers about Fourier theoretic probabilistic inference over
permutations from the machine learning community[77, 59, 60], as well as
graphical model structure learning research.

16.0.1 Card shuffling theory

Bayer and Diaconis [11] provided a a convergence analysis of repeated
riffle shuffles, showing famously that the number of shuffles required to
sufficiently randomize a standard 52 card deck is seven. Our novelty lies in
the combination of shuffling theory with probabilistic independence, which
was first exploited in our paper (Huang et al. [60]) for scaling inference
operations to large problems. As discussed in Section 13.2, Fulman [41]
introduced a class of shuffles known as biased riffle shuffles which are
not the same as the biased riffle shuffles discussed in Chapter 13. The fact
that the uniform riffle shuffling can be realized by dropping card with
probability proportional to the number of cards remaining in each hand
has been observed in a number of papers [11], but we are the first to (1)
formalize this in the form of the recurrence given in Equation 13.2, and (2)
to compute the Fourier transform of the uniform and biased riffle shuffling
distributions. Recently, Kondor and Barbosa [81] has used a similar inter-
leaving distribution in the context of evaluating kernel functions between
partial rankings.

16.0.2 Fourier analysis on permutations

Our dynamic programming approach for computing the Fourier transform
of a biased riffle shuffle (Section 13.3) bears some similarities to the FFT
(Fast Fourier Transform) algorithm proposed by Clausen and Baum [20],
and in particular, relies on the same branching rule recursions [114] that
we introduced in Chapter 6. While the Clausen FFT requires O(n! log(n!))
time, since our biased riffle shuffles are parameterized by a single α, we can
use the recurrence to compute low-frequency Fourier terms in polynomial
time.

16.0.3 Learning structured representations

Our insights for the structure learning problem described in Chapter 14

are inspired by some of the recent approaches in the machine learning liter-

223
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ature for learning the structure of thin junction trees (Bach and Jordan [7]).
In particular, the idea of using a low order proxy objective with a graph-cut
like optimization algorithm is similar to an idea which was recently intro-
duced in Shahaf et al. [118], which determines optimally thin separators
with respect to the Bethe free energy approximation (of the entropy) rather
than a typical log-likelihood objective. Our sample analysis is based on the
mutual information sample complexity bounds derived in Hoffgen [51],
which was also used in Chechetka and Guestrin [16] for developing a struc-
ture learning algorithm for thin junction trees with provably polynomial
sample complexity. Our EM based methods for learning structure from
partially observed data is directly inspired by the structural EM approaches
which were pioneered by Friedman [39]. Finally, the bootstrap methods
which we have employed in our experiments for verifying robustness bear
much resemblance to some of the common bootstrapping methods which
have been used in bioinformatics for analyzing phylogenetic trees (Holmes
[52, 53]).

16.0.4 Mallows models

As we have discussed (Section 14.1.3), our riffled independence models
generalize the popular class of Mallows models and generalized Mallows
models. Mallows models (as well as other similar distance based models)
have the advantage that they can compactly represent distributions for
very large n, and admit conjugate prior distributions (Meila et al. [97]).
Estimating parameters has been a popular problem for statisticians —
recovering the optimal σ0 from data is known as the consensus ranking or
rank aggregation problem and is known to be NP-hard (Bartholdi et al. [10]).
Many authors have focused on approximation algorithms instead.

Like Gaussian distributions, Mallows models also tend to lack flexibility,
and so Lebanon and Mao [86] propose a nonparametric model of ranked
(and partially ranked) data based on placing weighted Mallows kernels
on top of training examples, which, as they show, can realize a far richer
class of distributions, and can be learned efficiently. However, they do not
address the inference problem, and it is not immediately clear in many
Mallows models papers whether one can efficiently perform inference
operations like marginalization and conditioning in such models. Our work
on the other hand typically leads to a class of distributions which is both
rich as well as interpretable, and additionally, we have identified precise
conditions under which efficient conditioning is possible (the conditions
being that the observations take the form of partial rankings).

There are in fact several recent works to model partial rankings using
Mallows based models. Busse et al. [15] learned finite mixtures of Mal-
lows models from top-k data (also using an EM approach). Lebanon and
Mao [86] developed a nonparametric model based (also) on Mallows mod-
els which can handle arbitrary types of partial rankings. In both settings, a
central problem is to marginalize a Mallows model over all full rankings
which are consistent with a particular partial ranking. To do so efficiently,
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both papers rely on the fact (first shown in Fligner and Verducci [36]) that
this marginalization step can be performed in closed form. This closed
form equation of Fligner and Verducci [36], however, can be seen as a very
special case of our setting since Mallows models can always be shown
to factor riffle independently according to a chain structure.Specifically,
to compute the sum over rankings which are consistent with a partial
ranking Sγσ, it is necessary to condition on Sγσ, and to compute the nor-
malization constant of the resulting function. The conditioning step can
be performed using the methods in Chapter 15, and the normalization
constant can be computed by multiplying the normalization constant of
each factor of the hierarchical decomposition. Thus, instead of resorting
to the more complicated mathematics based on inversion combinatorics,
our theory of complete decomposability offers a simple conceptual way to
understand why Mallows models can be conditioned efficiently on partial
ranking observations.

Finally in recent related work, Lu and Boutilier [90] considered an even
more general class of observations based on DAG (directed acycle graph)
based observations in which probabilities of rankings which are not con-
sistent with a DAG of relative ranking relations are set to zero. Lu and
Boutilier [90] show in particular that the conditioning problem for their
DAG based class of observations is #P-hard. They additionally propose an
efficient rejection sampling method for performing probabilistic inference
within the general class of DAG observations and prove that the sampling
method is exact for the class of partial rankings that we have discussed in
Chapter 15.
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E X T E N S I O N S A N D O P E N Q U E S T I O N S

IN this chapter, we propose a number of interesting extensions and open
questions that we consider to be promsing for future investigation.

17.1 feature based generalization ability.

In real applications, items are related to each other in complex ways. For
example, if a user reports a preference for the movie “Indiana Jones” over
“Amores Perros”, he is most likely actually reporting something more
general, more complex, and perhaps more nebulous, perhaps that he has a
preference for a particular genre, or director, or language, etc.

Probabilistic models that account for feature based relationships among
items would allow for us to more accurately capture preference models over
real item sets as well as to draw more information out of a single training
example. Such models would allow for generalization ability to previously
unencountered items and allow one to scale to ranking problems over much
larger item collections. The question is: how can we model features without
sacrificing the compactness of our representations and efficiency of our
inference techniques?

It would be particularly interesting to integrate features into both of
our additive and multiplicative based decompositions. For example, one
might consider using linear regression to relate feature vectors with Fourier
coefficients.

17.2 fourier analysis: open questions and extensions

approximate fourier based inference guarantees. We have
some basic results about the errors that can be introduced by bandlimiting
and how those errors can be propagated by typical inference operations.
Currently, what is missing is a Boyen/Koller-like result ([13]) which would
presumably bound the deviation from the true distribution at all future
timesteps assuming certain conditions on the mixing distribution. While
it is true that the KL-divergence between the true distribution and the
approximate distribution can be shown to decrease monotonically at each
timestep, we do not have similar results yet for the conditioning step and it
is unclear how one should work with the KL-divergence functional in the
Fourier domain. Any theoretical bound is more likely to be stated in terms
of an L2 related distance.

optimization in the fourier domain. A crucial problem which
we have ignored up until now has been that of optimizing a function over
permutations. A natural question that one might ask is whether it is easy

229
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to maximize a bandlimited function? In particular, for a fixed bandlimiting
level, we would like to know if it is possible to maximize functions within
the bandlimited class in polynomial time. Things seem rosy given that the
maximum value of a first-order function on permutation can be found in
polynomial time (O(n3)) using the popular Hungarian (Kuhn-Munkres)
algorithm [101]. Unfortunately, beyond first-order, functions become far
more difficult to optimize, and in fact we have shown (in Theorem 57) that
the problem of optimizing a second-order function is NP-hard. To make
matters worse, the reduction given in Theorem 57 is an approximation
preserving reduction and there are no constant factor approximation al-
gorithms for the general TSP case. However, it would be useful in many
situations to have optimization routines which account for higher order
effects. To this end, we plan to explore various strategies for optimizing
these bandlimited functions that work well in practice. Another avenue
to explore is to search for problem structure which can be exploited to
guarantee optimality or near-optimality in certain cases (like convexity and
submodularity, respectively).

finding only the significant fourier coefficients As we have
discussed in previous chapters, the polynomial sized growth of low-order
Fourier coefficient matrices are still too unwieldy for tractable inference,
particularly after n > 30 or so. While we have addressed scaling problems
in this thesis by additionally exploiting probabilistic independence, another
tantalizing approach is to attempt to maintain only the Fourier coefficients
which contribute significantly toward a distribution’s energy.

How to discovery such “significant” Fourier coefficients for distributions
over the symmetric group is, as of yet, an open problem. One possible
starting point might lie in the work of Akavia [2] who studied a similar
problem for functions over abelian groups, showing that it is possible to
deterministically (and in sublinear time) pinpoint the Fourier coefficients
that contribute greater than a τ-fraction (say, 1%) of the total energy of the
function.

other groups and algebraic structures . The Fourier theoretic
inference routines that we presented in Chapter 8, as we mentioned, is not
specific to the symmetric group, with most of its results carrying over to
finite and compact Lie groups. As an example, the noncommutative group
of rotation operators in three dimensions, SO(3), appears in settings which
model the pose of a three dimensional object. Elements in SO(3) might be
used to represent the pose of a robot arm in robotics, or the orientation
of a mesh in computer graphics; In many settings, it would be useful to
have a compact representation of uncertainty over poses. We believe that
there are many other application domains with algebraic structure where
similar probabilistic inference algorithms might apply, and in particular,
that noncommutative settings offer a particularly challenging but exciting
opportunity for machine learning research.
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In a similar vein, we are also considering sets which do not have group
structure but are acted upon by some group. One such structure is known as
the rook monoid which is the set of partial matchings between two collections
A and B. We believe that studying distributions over the rook monoid will
prove to be useful for matching problems in computer vision which need to
deal with spurious measurements that need not be matched with anything.

quantifying uncertainty. It would be useful to measure the un-
certainty of a distribution over permutations. For example, the entropy
functional is one common such measure. The challenging part of writing
entropy in terms of Fourier coefficients, however, is that logarithms are not
easily expressed using Fourier coefficients. Furthermore, with a truncated
set of coefficients, it is impossible to hope for an exact measure, and the
best one could do would be to derive upper/lower bounds on the uncer-
tainty measure. We have considered Taylor approximations to the entropy
functional, but so far there has not been much success with the current
approach due to poor performance in bandlimited settings. It seems more
useful to look for other measures of uncertainty that are more naturally
expressible with Fourier coefficients.

alternative projection bases for functions on permutations .
In Part II, we focused exclusively on projections to the Gel’fand-Tsetlin basis
(Chapter 6) which has many useful properties particularly in the context
of developing efficient algorithms. However, it is possible that alternative
basis sets may also lead to interesting algorithms.

For example, wavelet bases which have been applied ([27]) ubiquitously
in engineering may also be useful for permutations. Wavelets functions,
which can be localized both in frequency and space, typically are better
at capturing both large scale diffuse effects as well as small scale local
effects (with which low-frequency Fourier representations have difficulties).
There are a number of open questions, however, including: (1) Which
wavelet bases are appropriate for functions on permutations? (2) How can
we efficiently exploit sparse wavelet structure for probabilistic inference?
And (3) how can one recover fundamental quantities (such as marginal
probabilities) without explicitly tabulating the function values of basis
elements?

17.3 riffled independence: open questions and extensions

tractable inference with incomplete rankings. We showed
in Chapter 15 that one can exploit riffled independence structure to condi-
tion on an observation if and only if it takes the form of a partial ranking.
While the space of partial rankings is both rich and useful in many settings,
it does not cover an important class of observations: that of incomplete
rankings, which are defined to be a ranking (or partial ranking) of a subset
of the itemset Ω. For example, Theorem 121 shows that the conditioning
problem for pairwise observations of the form “Apples are preferred over
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Bananas” is nondecomposable. Note that Top-k rankings are considered to
be “complete” rankings since they implicitly rank all other items in the last
n− k positions.

How then, can we tractably condition on incomplete rankings? One possi-
ble approach is to convert to a Fourier representation using Algorithm 13.3,
then conditioning on a pairwise ranking observation using Kronecker con-
ditioning (Algorithm 8.4). This Fourier domain approach would be useful
if one were particularly interested in low-order marginals of the posterior
distributions.

One example in particular may be the calculation of the tripletwise
marginals h(σ(i)|σ(j) < σ(k)) which arise in the structure learning problem
(Chapter 14). Here, after conditioning on the pairwise ranking σ(j) < σ(k),
we are interested only in the first-order marginal probabilities associated
with item i.

When the Fourier approach is not viable, another option may be to as-
sume that the posterior distribution takes on a particular riffle independent
structure (in the same way that mean field methods would assume a fac-
torized posterior). The research question of interest is: which hierarchical
structure should be used for the purposes of approximating the posterior?

structure learning extensions . Our study of structure learning
in the context of riffled independence can be extended in a number of
directions. In this thesis, we have focused on a top-down clustering based
approach for structure discovery. In some circumstances, however, it may be
more useful to pursue a bottom-up approach, where instead of recursively
partitioning sets of items, one merges items, then merges subsets of items
together recursively. For example, with large itemsets, there may not be
enough samples to discover an entire hierarchy, but the training set might
be adequate for learning small hierarchies among subsets of items. The
main open question here is how to quantify the “affinity” for two subsets
(which may not necessarily cover the entire item set) to be merged, as
opposed to quantifying the “discord” between two subsets as we have done
in Chapter 14

Another interesting open question is whether there exists an algorithm
with a constant factor approximation guarantees for the structure learning
problem. While our sample complexity guarantees hold for data that is
drawn from some underlying distribution which truly factors as a riffle
independent hierarchy, it is not known whether our Anchors algorithm
is guaranteed to optimize or approximately optimize the desired objective
function. One potential starting point would be to examine the randomized
greedy approach of Mathieu and Schudy [96] who consider a similar setting
and establish approximation bounds.

parametric interleaving models. In Part III, we considered, on
the one hand, interleaving models in which the probability of each possible
interleaving is explicitly represented and tabulated. On the other hand we

[ August 4, 2011 at 11:32 ]



17.3 riffled independence: open questions and extensions 233

have also considered the highly parameterized biased riffle shuffles with
only one parameter which make strong Markovian assumptions.

The space between these two extremes is worth exploring, particularly
in the context of real ranking data. For example, there are simple gen-
eralizations of the biased riffle shuffle which make the same Markovian
assumptions, but allow for different bias probabilities depending on the
bottom card of each the left and right hands, reflecting, perhaps, that
crunchy fruits are preferred over crunchy vegetables, but soft vegetables are
preferred over soft fruits. Additionally, one can consider relaxing the Marko-
vian assumptions on card drops to account for longer range dependencies,
imitating a “sticky” card effect.

learning from dependent data. In this thesis, we have assumed
throughout that training examples are independent and identically dis-
tributed. However in practice these are not always safe assumptions as a
number of factors such as the user interface can impact the validity of both.
For example, in an internet survey in which a user must perform a series
of preference ranking tasks in sequence, a worry is that prior ranking tasks
may bias the results of his future rankings.

Another source of bias lies in the reference ranking that may be displayed,
in which the user is asked to rearrange items by ‘dragging and dropping’.
On the one hand, showing everyone the same reference ranking may bias
the resulting data. But on the other hand, showing every user a different
reference ranking may mean that the training examples are not exactly
identically distributed.

Understanding, identifying, and finally, learning in spite of the differ-
ent types of biases that may occur in eliciting preference data remains a
fundamental problem in ranking.

studying strategic voting. It is interesting to consider the differ-
ences between the actual vote distributions considered in this thesis against
the approximate riffle independent distributions. Take the APA dataset,
for example, in which the optimal approximation by a riffle independent
hierarchy reflects the underlying political coalitions within the organi-
zation. Upon comparison between the approximation and the empirical
distribution, however, some marked difference arise. For example, the riffle
independent approximation underestimates the number of votes obtained
by candidate 3 (a research psychologist) who ultimately won the election.

One possible explanation for the discrepancy may lie in the idea that
voters tend to vote strategically in APA elections, placing stronger can-
didates of opposing political coalitions lower in the ranking, rather than
revealing their true preferences. An interesting line of future work lies in
detecting and studying the presence of such strategic voting in election
datasets. Open questions include (1) verifying mathematically whether
strategic voting does indeed exist in, say, the APA election data, and (2) if
so, why the strategic voting effect is not strong enough to overwhelm our
riffle independence structure learning algorithms.
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T H E S I S S U M M A RY A N D D I S C U S S I O N

PERMUTATIONS — mathematically defined as one-to-one mappings
from a finite set to itself — are all around us. In computer science,

permutations arise in diverse applications ranging from matching problems
to multitarget tracking problems, to the rankings of webpages by a search
engine, and even to the analysis of the ordering of events in a news story.
Despite their ubiquity, approaches for reasoning with uncertainty (i.e.,
probability distributions) over permutations have historically been limited
to restricted families of distributions due to the fact that there are n!
permutations for any n objects.

In this thesis, we have studied tractable representations of uncertainty on
the group of permutations and efficient algorithms for performing inference
using these representations. We have focused on two general strategies for
decomposing large distributions into compactly representable parts based
on additive and multiplicative decompositions, respectively. An underlying
theme throughout is the idea that both kinds of structural decompositions
can be employed in tandem to relax the apparent intractability of probabilis-
tic reasoning over the space of permutations. Using these decompositions,
we developed general, efficient techniques applicable to multiple domains.
For example, we applied our methods both to solving challenging camera
tracking scenarios as well as to reveal voting patterns in Irish elections
which had never been identified before. In the following two sections, we
summarize the main contributions of this thesis.

18.1 additive decompositions.

Taking inspiration from signal processing, we extensively explored the idea
of additively decomposing distributions over permutations into a weighted
sum of low frequency Fourier basis functions. Unlike the common discrete
Fourier transform appearing ubiquitously in digital applications, Fourier
transforms on permutations are a modern development based on group
theory and until recently, have only been studied theoretically [29]. The
work of this thesis, along with that of collaborators such as Leonidas Guibas
and Risi Kondor, represent the first successful applications of these modern
Fourier analytic methods to machine learning.

The key insight to understanding Fourier transforms on permutations
is that simple marginal probabilities, such as the first order probabilities
(the probability that a single item, say, the movie Braveheart, maps to rank
1, and is thus the favorite), can be efficiently computed from the “low-
frequency” Fourier coefficients of a distribution. Moreover, we discussed
how these these low-frequency coefficients can be appropriately general-
ized to “higher-frequency” coefficients which capture more complicated
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marginals involving multiple items (like the second-order probability that two
movies, Braveheart and Forrest Gump, map to rank 1 and rank 2, respec-
tively). Storing low frequency coefficients is equivalent to storing low-order
probabilities involving only small subsets of items, which can be repre-
sented with polynomial storage complexity. On the other hand, storing high
frequency coefficients leads to higher quality approximations but at the cost
of a much higher storage complexity, and therefore our Fourier methods
offer a principled approach for trading off between storage complexity
and approximation accuracy [59]. The Fourier perspective also offers a
new approach for approximate probabilistic reasoning — in particular,
we can ignore high-frequency coefficients and run probabilistic reasoning
operations by working only with the low frequency coefficients. This line
of thought led us to develop a number of highly efficient and provably cor-
rect algorithms for performing probabilistic reasoning using these Fourier
theoretic representations [59].

application to multi-target tracking . It may seem surprising,
at first blush, to learn that tracking multiple moving persons is much
more difficult than tracking a single person The difficulty is rooted in the
so-called data association (or identity management) problem in which one
must associate the n measured trajectories with a permutation of the n
identities of the persons being tracked. We applied our algorithms for
tracking multiple humans moving in an environment equipped with a
networked array of twelve cameras. With multiple views, occlusions and
incomplete camera coverage, data association problems make tracking
extremely challenging (and completely intractable for exact methods), but
our Fourier approximations manage to perform data association at a near
optimal rate (∼ 88% the rate of an ‘omniscient’ tracker which is given the
true data associations) [57].

theory. Performing probabilistic reasoning algorithms with a truncated
Fourier transform can, unsurprisingly, lead to errors. For a number of
common reasoning operations, we provided theoretical results illuminating
the nature of error propagation in the Fourier domain. As an example,
we identified many situations under which the probability estimates pro-
duced by our methods can be expected to be exact, thus showing that our
approximations can sometimes be tight [57, 59]. Finally, a surprising and
theoretically significant result is that many of our algorithms can be applied,
essentially unchanged, to performing probabilistic reasoning operations
over any finite or compact Lie group [59]. For example, it may seem that
representing distributions over permutations should require substantially
different mathematics compared to representing distributions over the ro-
tation matrices or quaternions (which are fundamental to applications in
computer vision and robotics). However, our work shows that all of these
exotic but useful spaces can really be treated within the same mathematical
framework.
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18.2 multiplicative decompositions.

While exactly representing a distribution over permutations of 20-30 ob-
jects would require millions of petabytes, our low frequency decomposi-
tions might only require a hundred megabytes. To scale to even larger
problems, we proposed to additionally exploit probabilistic independence
(corresponding to multiplicative decompositions of distributions) [60]. For
example, when tracking many persons, it is often unnecessary to jointly
reason over all n persons. Intuitively, groups of people who are far apart
do not interact (or interact weakly), and thus it would suffice to reason over
individual groups independently of each other.

We developed algorithms for detecting independence using Fourier
coefficients and have applied these algorithms to track large numbers
of objects by adaptively finding independent subgroups of objects and
factoring the distribution appropriately. Experimentally we have shown
that our algorithm can handle n = 100 objects in a challenging ant tracking
dataset [72], while the bits required to exactly represent such a distribution
outnumbers the atoms in the universe.

riffled independence for rankings. Though moving groups of
objects can sometimes be approximately tracked independently, not all
permutation data is well modeled using naïve independence decompo-
sitions. To handle ranked data, we introduced ([54]) a novel probabilistic
concept which we have called riffled independence, that has proven to be a
far more appropriate assumption for rankings. Our introduction of riffled
independence has led to not only the development of computationally
efficient learning algorithms, but also has given us completely new insights
into existing ranking datasets.

Experimentally, we showed that while items in real ranking datasets are
never independent in the ordinary sense, there are a number of datasets in
which items exhibit riffled independence [54, 55, 56]. In Irish election datasets,
for example, we showed that the many Irish political factions are often near
riffle independent of each other, thus revealing a hidden voting pattern
that had previously gone unnoticed. Our methodology also applies to
preference datasets — we discovered, based on a food survey conducted
in Japan [70], that certain subsets of sushi types (such as tuna based sushi
and vegetarian options) are also near riffle independent.

Much of the progress and theoretical results that have come from our
work on riffled independence has paralleled the theoretical development
of graphical models. Algorithmically, we introduced efficient learning al-
gorithms which operate only in the Fourier domain [54], allowing us to
simultaneously exploit additive and multiplicative structure. We also in-
troduced polynomial time algorithms which can automatically discover
subsets of riffle independent items from low-frequency statistics of the
ranking data [55] and provided guarantees that, given polynomially many
rankings, our algorithms are successful with high probability. Finally, we
established an intimate connection between the concept of riffled indepen-

[ August 4, 2011 at 11:32 ]



238 thesis summary and discussion

dence and partial rankings, which has allowed us to develop algorithms
exploiting riffled independence structure for efficiently computing proba-
bilistic reasoning queries [61].

18.3 future research directions

My long term research objective is to further our understanding of the
role that permutations and related mathematical mappings play in human
preference, information presentation and information acquisition. In par-
ticular, I am interested in identifying structure in each of these problems
and exploiting this structure to develop highly scalable, empirically effec-
tive, and provably correct algorithms for reasoning and learning with rich,
descriptive probability distributions in these domains. In my dissertation
research, I have taken several steps towards this goal. We now understand
several fundamental and realistic structural assumptions that one can use
for permutation data. Furthermore, we know how to exploit these struc-
tural constraints to reduce the computational costs associated with learning
and reasoning with permutations by orders of magnitude.

I hope to apply the insights that have resulted from my thesis work to
new research directions, which I outline below. The following long-term
research directions can thus broadly be partitioned into two categories:
(1) new and exciting applications of reasoning with permutations, and
(2) going beyond permutations to study probabilistic reasoning on more
general mapping spaces with applications to geometric/spatial reasoning.

18.3.1 New applications

ranking relevant information in a sensor network . Modern
advances in sensor network technologies and mobile devices have enabled
us to have constant access to a wealth of information from a multitude
of modalities. One day these technologies will, for example, enable from
near-instant notification of disasters such as earthquakes and tsunamis, to
personalized health monitoring. In such massive-scale networks, we run
into the problem of coping with the deluge of data coming from multiple
sources. For any user, we could potentially show them any number of
things sensed by any node in the network, but it is infeasible to show
the user everything. Instead, we would like to only present relevant and
interesting information. For example, while an 8.9 magnitude earthquake
may be relevant information for everyone in the world, a farmers market
announcement might only be relevant to local residents.

I am interested in designing efficient probabilistic methods for ranking sensor
information with respect to relevance for a particular user. Unlike ranking
problems in ordinary information retrieval problems, there are a number
of problems which I believe are unique to the sensor network domain. For
example, (1) how do we deal with widely heterogeneous sources of sensor
data ranging from not only emails and ‘tweets’, but also to temperature,
images, and sounds? (2) How do we efficiently optimize over the space
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of rankings on small, power-constrained devices? (3) How can we deal
with ranking aggregated sources of information? (For example, the fact
that someone in Denver has the flu may not be important, but the fact that
hundreds in Denver have contracted a particular virus may be significant).
Solving these problems would allow us to harness much more of the vast
potential of large scale sensor networks.

automatic curriculum design. Today, if we were to query Google
or Wikipedia for, say, ‘trigonometry’, we would receive a number of highly
relevant websites and articles. What these search engines do not tell us is the
optimal order in which we should read through these articles. Intuitively
however, the order (or ranking) in which we acquire information is deeply
tied to the speed at which we can learn. Today, if we were to query Google
or Wikipedia for, say, ‘trigonometry’, we would receive a number of highly
relevant articles. What these search engines do not tell us is the optimal
order in which we should read through these articles. Computationally
optimizing the ordering over which one reads through a set of articles can
be thought of as an automated way for designing a curriculum, and by doing
so, we may be able to improve the speed at which a student acquires new
knowledge, unlocking his or her true potential.

I am excited about the possibilities of optimizing curricula for person-
alized education. Every person has a unique style of learning and comes
to the “classroom” with different backgrounds and biases. To succeed as
curriculum designers, we should create curricula personally tailored to each
individual.

A promising starting point will be to exploit the “wisdom of the crowds”
phenomenon, in which we collect data about the order in which people
read through articles on a certain topic. By modeling such a dataset, we
can make predictions and form recommendations. There are a number of
possible data sources. For example, with the rising costs of tuition and
textbooks, many college students are turning to online distance learning
programs [22]. I believe these programs to not only be a valuable source
of user interaction data, but a setting in which we could experiment with
different curricula and have a real impact in education by eliminating
frustration in distance learning and decreasing the number of people who
leave these programs.

18.3.2 New combinatorial and algebraic spaces

mappings between shapes The problem of finding a mapping be-
tween two geometric deformable shapes (in order, for example to align, or
register the shapes) arises in a number of computational situations such as
computer graphics and computer vision. But there has been relatively little
work on efficient and principled probabilistic reasoning with shape registra-
tion problems, which, if solved, would allow us to deal more effectively
with noise, missing data, or model misspecification.
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In many ways, probabilistic shape mapping is much like any problem
involving distributions over permutations, which are themselves a type of
mapping (though without geometric features such as curvature or smooth-
ness), and I believe that many of the ideas from my thesis work may
generalize to this geometric setting.

Fourier or riffled independence structure may not be sufficient for shape
matching, and to develop realistic probabilistic models which allow for
efficient inference may require insights from both computational geometry
and machine learning. I look forward to collaborating with computational
geometers and topologists to formulate probabilistic reasoning problems in
geometric spaces.

joint mappings among a collection of spaces . Going beyond
mappings between just two shapes, it is useful to consider mappings between
an entire collection of spaces which allow one to exploit the statistical strength
of multiple mappings and compositions thereof to draw better informed
inferences. These ideas may have impact in fields beyond geometry. For
example, there have been similar ideas in machine translation in which
one computes a ‘mapping’ between sentences of two languages. For some
language pairs, such as English-to-Catalan, however, there do not exist
many parallel corpora which can be used for training. But, there do exist
parallel corpora between Catalan and its neighbors, Spanish and French,
and therefore we might hope to obtain superior translations by leveraging
the statistical power of multiple translations with intermediary languages,
such as English-to-Spanish-to-Catalan and English-to-French-to-Catalan.
Little work exists about performing principled probabilistic inference and
formulating statistical guarantees for this problem of reasoning over map-
pings between collections of spaces. How do we algorithmically incorporate
information from multiple mappings to inform our inferences/predictions?
What kinds of realistic structural assumptions can be used to make proba-
bilistic inference efficient? Can we establish statistical guarantees of accu-
racy by leveraging multiple mappings? Progress on these problems will
lead to advances for both computational geometry as well as machine learn-
ing, and allow us to efficiently deal with uncertainty in problems which
require spatial reasoning such as robotic manipulation and 3d content
creation.

18.4 last words

The work in this thesis on permutations is theoretically grounded and has
drawn from diverse technical areas such as graphical models, statistics,
algorithms, signal processing, group theory, combinatorics and optimiza-
tion theory. I believe that many of these same fields would likewise be
interested in different contributions from this thesis.

I look forward to combining further insights from all these fields and
others, as well as collaborating with colleagues from different fields, such
as HCI and Education, in order to make progress in my research program.
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The steps outlined above represent just the beginnings of my vision of such
a program. Advances on these fronts will have implications on education,
social sciences, cognitive psychology, and web sciences, and I am excited to
see where this progress will lead.
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A
G R O U P S

THIS section is intended as a quick glossary for the basic group theoretic
definitions and facts used in this thesis.

a.1 group axioms

Groups are a generalization of many of the spaces that we typically work
with, such as the real numbers, integers, vector spaces, and matrices. The
definition of a group unifies all of these spaces under a handful of axioms.

Definition 130 (Group). A group is a set G together with a binary operation
· : G×G → G (called the group operation) such that the following group
axioms hold:

1. (Associativity) The group operation is associative. That is, for any
group elements g1,g2,g3 ∈ G, we have:

(g1 · g2) · g3 = g1 · (g2 · g3), for all g1,g2,g3 ∈ G.

2. (Identity) There exists an identity element (denoted by ε) such that
g · ε = ε · g = g for any g ∈ G.

3. (Inverses) For every g ∈ G, there exists an inverse element g−1 such
that g · g−1 = g−1 · g = ε.

Definition 131 (Abelian Group). If g1 · g2 = g2 · g1 holds for all g1,g2 ∈ G,
then G is called an Abelian or commutative group.

Perhaps the most familiar group is the set of integers, Z, with respect to
the addition operation. It is well known that for any integers a,b, c ∈ Z,
a + (b + c) = (a + b) + c. The identity element in the integers is zero,
and every element has an additive inverse (a + (−a) = (−a) + a = 0).
Additionally, the integers are an Abelian group since a+ b = b+ a for any
a,b ∈ Z. Note that the natural numbers N = {0, 1, 2, 3, . . . } do not form a
group with respect to addition because inverses do not exist.

The main example of a group in this thesis, of course, is the symmetric
group, the set of permutations of {1, . . . ,n}. The group operation on per-
mutations is function composition, which is associative, and we discuss
inverses and the identity element in Section 2.

Example 132. There are many groups besides the integers and the symmetric
group. The following are several examples.

• The positive real numbers R+ form a group with respect to multiplication.
The identity element of R+ is the multiplicative identity, 1, and given a real
number x, there exists an inverse element 1x .

245
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• As an example of a finite group, the integers modulo n, Z/nZ =

{0, 1, . . . ,n− 1}, form an Abelian group with respect to addition modulo n.
For example, Z/6Z has 6 elements, {0, . . . , 5}, and 4+ 5 = 3 (mod6).

• The invertible n× n matrices over the reals, GLn(R), form a group with
respect to matrix multiplication. The n× n identity matrix serves as the
identity element in GLn(R), and by assumption, every matrix in GLn(R)

is invertible.

a.2 subgroups and cosets

The group axioms impose strong structural constraints on G, and one of the
ways that structure is manifested in groups is in the existence of subgroups.

Definition 133 (Subgroup). If G is a group (with group operation ·), a
subset H ⊂ G is called a subgroup if it is itself a group with respect to the
same group operation. H is called a trivial subgroup if it is either all of G or
consists only of a single element.

Example 134. We have the following examples of subgroups.

• The even integers, 2Z, form a subgroup of the integers since the sum of any
two even integers is an even integer, and the inverse (negative) of an even
integer is again even. However, the odd integers do not form a subgroup
since the sum of two odd integers is not odd.

• The special orthogonal matrices (orthogonal matrices with determinant +1)
form a subgroup of the group of n×n matrices, GLn(R). This can be seen
by using the facts (1), that (detA)(detB) = det(AB) and (2), that the
inverse of any orthogonal matrix is also orthogonal.

Given a subgroup, we can partition a group into disjoint translations of
that subgroup. These translations are known as cosets.

Definition 135 (Coset). Let H be any subgroup of G. A left H-coset in G is
any subset of the form:

gH = {g · h : such that h ∈ H}, for some g ∈ G.

Similarly, a right H-coset in G is any subset of the form:

Hg = {h · g : such that h ∈ H}, for some g ∈ G.

Example 136. The group Z/6Z contains a subgroup H consisting of elements
{0, 3}. The cosets of H are: 0+H = {0, 3}, 1+H = {1, 4} and 2+H = {2, 5},
which together form a disjoint partition of the entire group Z/6Z. Since Z/6Z is
an Abelian group, left and right cosets are the same, but in general they need not
be.

Because of the way H-cosets can disjointly partition a group, the car-
dinality of a finite group G is always divisible by the cardinality of any
subgroup H. In the above example, |Z/6Z| = 6 and |H| = 2; The number of
H-cosets covering G (also known as the group index) is therefore 6/2 = 3.

Proposition 137 (Lagrange’s Theorem). |H| divides |G| for any finite group G
and subgroup H ⊂ G,
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a.3 group homomorphisms and isomorphisms

We would like to know if two groups G and H are the “same” up to a rela-
beling of elements, or at least if they share some form of algebraic structure.
This notion of ‘sameness’ is formalized via homomorphisms and isomorphisms,
maps between two groups which preserve the group operation structure.

Definition 138 (Homomorphisms and Isomorphisms). Let (G, ·) and (H, ?)
be any groups. A function φ : G→ H is called a group homomorphism if for
any g1,g2 ∈ G, φ(g1 · g2) = φ(g1) ?φ(g2).

If φ is also bijective, then we say that φ is a group isomorphism.

Example 139.

• (φ : Z×Z→ Z): Define φ((x1, x2)) = x1. The map φ, which projects to
the first coordinate, is a homomorphism since φ((x1, x2)) +φ((y1,y2)) =
x1 + y1 = φ((x1 + x1, x2 + y2)).

• (φ : Z/3Z → S3): Define φ(0) = [1 2 3], φ(1) = [2 3 1], and φ(2) =

[3 1 2]. φ can be checked to be a homomorphism. For example, φ(1)φ(2) =
[2 3 1][3 1 2] = [1 2 3] = φ(0) = φ(1+ 2).

• (Group representations, φ : G→ Cdρ×dρ): Notice that the definition of
a group representation 20, can be rephrased simply as any homomorphism
from a group G to Cdρ×dρ .

a.4 group actions

Group theory is often used to study the symmetries of a space or set. These
‘symmetries’ are often encoded via group actions.

Definition 140 (Group action). Let G be any group and X any set. A group
action of G on S is an operation · : G×X→ X such that

• For all g1,g2 ∈ G and x ∈ X, g1 · (g2 · x) = (g1 · g2) · x, and

• For the identity element ε ∈ G, ε · x = x for all x ∈ X.

More abstractly (though equivalently), one can view a group action as any
group homomorphism ψ : G→ SX from G to the permutation group of X.

Example 141.

• (Trivial group action): The trivial group action maps every element of X
to itself (i.e., g · x = x for all x ∈ X).

• (Sn acting on {1, . . . ,n}): The symmetric group (on n items) acts on the
set {1, . . . ,n} via the (obvious) operation σ · x = σ(x).

• (Z/3Z on R2): The cyclic group of order 3 (Z/3Z) acts on the two di-
mensional plane via 120°counter-clockwise rotations. In particular, given an
element (x1, x2) ∈ R2, we define g · (x1, x2) via:[
cos(2π/3) − sin(2π/3)

sin(2π/3) cos(2π/3)

]g [
x1

x2

]
=

[
−1/2 −

√
3/2

−
√
3/2 −1/2

]g [
x1

x2

]
,

[ August 4, 2011 at 11:32 ]



248 groups

for each g ∈ {0, 1, 2} = Z/3Z.

• (Group representation acting on a vector space): Generalizing the previ-
ous example, note that any group representation ρ : G→ Cdρ×dρ acts on
the vector space Cdρ by defining the group action g · x via g · x = ρ(g)x.

Finally, the collection of elements in the group G which fix an element
of X forms a subgroup of G. We call this subgroup a stabilizer or isotropy
subgroup.

Definition 142 (Stabilizer subgroup). Given an element x ∈ X, and a group
action of G on X, the set

Gx = {g ∈ G : g · x = x}

forms a subgroup of G, which we call the stabilizer or isotropy subgroup of x.
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C L E B S C H - G O R D A N S E R I E S

IN this appendix, we turn to the Tensor Product Decomposition problem,
which is that of finding the irreducible components of the typically

reducible tensor product representation. If ρλ and ρµ are irreducible repre-
sentations of Sn, then there exists an intertwining operator Cλµ such that:

Cλµ
−1 · (ρλ ⊗ ρµ(σ)) ·Cλµ =

⊕
ν

zλµν⊕
`=1

ρν(σ). (B.1)

We present two methods for computing the Clebsch-Gordan series (zλµν)
for a pair of irreducible representations ρλ ⊗ ρµ (we defer the problem of
computing the Clebsch-Gordan coefficient matrices for Appendix D). The
results of this appendix are specific to the symmetric group.

b.1 decomposing representations via character theory

We begin with a simple, well-known algorithm based on group characters for
computing the Clebsch-Gordan series that turns out to be computationally
intractable, but yields several illuminating theoretical results. See [117] for
proofs of the theoretical results cited in this section.

One of the main results of representation theory was the discovery that
there exists a relatively compact way of encoding any representation up to
equivalence with a vector which we call the character of the representation.
If ρ is a representation of a group G, then the character of the representation
ρ, is defined simply to be the trace of the representation at each element
σ ∈ G:

χρ(σ) = Tr (ρ(σ)) .

The reason characters have been so extensively studied is that they uniquely
characterize a representation up to equivalence in the sense that two char-
acters χρ1 and χρ2 are equal if and only if ρ1 and ρ2 are equivalent as
representations. Even more surprising is that the space of possible group
characters is orthogonally spanned by the characters of the irreducible
representations. To make this precise, we first define an inner product on
functions from G.

Definition 143. Let φ,ψ be two real-valued functions on G. The inner
product of φ and ψ is defined to be:

〈φ,ψ〉 ≡ 1

|G|

∑
σ∈G

φ(σ)ψ(σ).

With respect to the above inner product, we have the following important
result which allows us to test a given representation for irreducibility, and
to test two irreducibles for equivalence.

249
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Proposition 144. Let χρ1 and χρ2 be characters corresponding to irreducible
representations. Then

〈χρ1 ,χρ2〉 =

{
1 if ρ1 ≡ ρ2
0 otherwise

.

Proposition 144 shows that the irreducible characters form an orthonor-
mal set of functions. The next proposition says that the irreducible charac-
ters span the space of all possible characters.

Proposition 145. Suppose ρ is any representation of G and which decomposes
into irreducibles as:

ρ ≡
⊕
λ

zλ⊕
`=1

ρλ,

where λ indexes over all irreducibles of G. Then:

1. The character of ρ is a linear combination of irreducible characters (χρ =∑
λ zλχρλ),

2. and the multiplicity of each irreducible, zλ, can be recovered using 〈χρ,χρλ〉 =
zλ.

A simple way to decompose any group representation ρ, is given by
Proposition 145, which says that we can take inner products of χρ against
the basis of irreducible characters to obtain the irreducible multiplicities zλ.
To treat the special case of finding the Clebsch-Gordan series, one observes
that the character of the tensor product is simply the pointwise product of
the characters of each tensor product factor.

Theorem 146. Let ρλ and ρµ be irreducible representations with characters
χλ,χµ respectively. Let zλµν be the number of copies of ρν in ρλ⊗ ρµ (hence, one
term of the Clebsch-Gordan series). Then:

1. The character of the tensor product representation is given by:

χρλ⊗ρµ = χλ · χµ =
∑
ν

zλµνχν. (B.2)

2. The terms of the Clebsch-Gordan series can be computed using:

zλµν =
1

|G|

∑
g∈G

χλ(g) · χµ(g) · χν(g), (B.3)

and satisfy the following symmetry:

zλµν = zλνµ = zµλν = zµνλ = zνλµ = zνµλ. (B.4)

Dot products for characters on the symmetric group can be done in
O(#(n)) time where #(n) is the number of partitions of the number n,
instead of the naive O(n!) time. In practice however, #(n) also grows too
quickly for the character method to be tractable.
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b.1.1 Murnaghan’s formulas for tensor product decompositions

To handle larger problems, we turn to a theorem by Murnaghan [102],
which gives us a ‘bound’ on which representations can appear in the tensor
product decomposition on Sn.

Theorem 147. Let ρ1, ρ2 be the irreducibles corresponding to the partition (n−

p, λ2, . . . ) and (n− q,µ2, . . . ) respectively. Then the product ρ1 ⊗ ρ2 does not
contain any irreducibles corresponding to a partition whose first term is less than
n− p− q.

In view of the connection between the Clebsch-Gordan series and con-
volution of Fourier coefficients, Theorem 147 is analogous to the fact that
for functions over the reals, the convolution of two compactly supported
functions is also compactly supported.

We can use Theorem 147 to show that Kronecker conditioning is exact at
certain irreducibles. Below we restate the theorem and provide its proof.

Theorem 148. If λMIN = (n − p, λ2, . . . ), and the Kronecker conditioning
algorithm is called with a likelihood function whose Fourier coefficients are nonzero
only at ρµ when µD (n− q,µ2, . . . ), then the approximate Fourier coefficients of
the posterior distribution are exact at the set of irreducibles:

ΛEXACT = {ρλ : λD (n− |p− q|, . . . )}.

Proof. (of Theorem 60) Let Λ denote the set of irreducibles at which our
algorithm maintains Fourier coefficients. Since the errors in the prior come
from setting coefficients outside of Λ to be zero, we see that Kronecker con-
ditioning returns an approximate posterior which is exact at the irreducibles
in

ΛEXACT = {ρν : zλµν = 0, where λ /∈ Λ and µD (n− q,µ2, . . . )}.

Combining Theorem 147 with Equation B.4: if zλµν > 0, with λ = (n−

p, λ2, λ3, . . . ),µ = (n− q,µ2,µ3, . . . ) and ν = (n− r,ν2,ν3, . . . ), then we
have that: r 6 p+ q,p 6 q + r, and q 6 p+ r. In particular, it implies
that r > p− q and r > q− p, or more succinctly, r > |p− q|. Hence, if
ν = (n− r,ν2, . . . ), then ρν ∈ ΛEXACT whenever r 6 |p− q|, which proves
the desired result.

The same paper [102] derives several general Clebsch-Gordan series
formulas for pairs of low-order irreducibles in terms of n, and in particular,
derives the Clebsch-Gordan series for many of the Kronecker product pairs
that one would likely encounter in practice. For example, we have:

ρ(n−1,1) ⊗ ρ(n−1,1) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1),

ρ(n−1,1) ⊗ ρ(n−2,2) ≡ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1)

⊕ ρ(n−3,3) ⊕ ρ(n−3,2,1),

ρ(n−1,1) ⊗ ρ(n−2,1,1) ≡ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1)

⊕ ρ(n−3,2,1) ⊕ ρ(n−3,1,1,1),
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ρ(n−1,1) ⊗ ρ(n−3,3) ≡ ρ(n−2,2) ⊕ ρ(n−3,3) ⊕ ρ(n−3,2,1)

⊕ ρ(n−4,4) ⊕ ρ(n−4,3,1).
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L I T T L E W O O D - R I C H A R D S O N C O E F F I C I E N T S

IN this appendix, we present the Littlewood-Richardson rule for comput-
ing the cλµ,ν coefficients, as well as proofs for Chapter 12.

c.1 definitions

Let λ be a partition of n and let p and q be positive integers such that
p+ q = n. If ρλ is any irreducible representation of Sn, then, restricted to
permutations which lie in the subgroup Sp × Sq ⊂ Sn, ρλ splits according
to Equation 5.4 as a direct sum of irreducibles of Sp × Sq which take the
form ρµ ⊗ ρν (where µ and ν are partitions of p and q respectively):

Lλµν ·ρλ(σ) ·Lλµν
T ≡

⊕
µ,ν

cλµ,ν⊕
`=1

ρµ(σp)⊗ρν(σq), for allσ = [σp,σq] ∈ Sp×Sq.

(C.1)

As a shorthand, we will also write the decomposition as: ρλ ↓Sp×Sq≡⊕
µ,ν
⊕cλµ,ν
`=1 ρµ⊗ ρν, where we have suppressed the coupling matrices Lλµν,

and the ↓Sp×Sq symbol (called the restriction operator) means that the de-
composition holds only for elements of Sp × Sq even if the representation
ρλ is defined over all of Sn. The multiplicities in the decomposition (Equa-
tion C.1) are famously known as the Littlewood-Richardson coefficients.1 In
this appendix, we describe a result known as the Littlewood-Richardson
(LR) rule which will allow us to compute the Littlewood-Richardson coeffi-
cients tractably (at least for low-order terms). There are several methods
for computing these numbers (see [73, 130], for example) but it is known
[104] that, in general, the problem of computing the Littlewood-Richardson
coefficients is #P-hard.

The statement of the LR rule requires us to define a class of (rather
complex) combinatorial objects known as the Littlewood-Richardson tableaux,
which will be used to count the LR coefficients. We proceed by defining
the LR tableaux in several stages.

• (Ferrers diagrams) We can visualize a partition λ, of n, using a Ferrers
diagram which is an arrow of boxes with λi boxes in the ith row of
the associated Ferrers diagram. For example, we have the following
partitions of n = 5 and their respective Ferrers diagrams.

1 In most texts, the Littlewood-Richardson coefficients are defined in a slightly different way
using induced representations (see [114]).
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(5) (4, 1) (3, 2) (3, 1, 1) (2, 2, 1) (2, 1, 1, 1) (1, 1, 1, 1, 1)

• (Skew tableaux) Let λ be a partition of n and let µ be a partition of some
p 6 n such that µi 6 λi for each i. A skew tableau with shape λ\µ is
the diagram obtained by removing all boxes of the Ferrers diagram
of λ which also belong to the Ferrers diagram of µ. The following are
a few examples of skew tableaux and their corresponding shapes.

λ\µ = (6, 3, 1)\(3, 1) λ\µ = (3, 3, 3)\(2, 2) λ\µ = (5, 4, 2)\(3, 1)

• (Content) As before, we will consider λ to be a partition of n and µ
to be a partition of some p 6 n. Additionally, let ν be a partition
of q = n− p. We say that a skew tableaux of shape λ\µ has content
ν = (ν1,ν2,ν3, . . . ) if its boxes are filled in with ν1 ones, ν2 twos, ν3
threes, and so on. To extend the previous example, we have:

λ\µ = (6, 3, 1)\(3, 1) λ\µ = (3, 3, 3)\(2, 2) λ\µ = (5, 4, 2)\(3, 1)

ν = (3, 2, 1) ν = (4, 1) ν = (2, 2, 2, 1)
1 1 1

3 2
2

1
1

1 2 1

3 1
3 2 1

2 4

• (Semistandard tableaux) We say that a skew tableau with shape λ\µ
and content ν is semistandard if its rows are weakly increasing (reading
from left to right) and its columns are strictly increasing (reading from
top to bottom). For example, the following are semistandard tableaux
with shape (6, 3, 2)\(3, 1):

ν = (4, 2, 1) ν = (2, 2, 2, 1) ν = (5, 2) ν = (2, 2, 1, 1, 1) ν = (4, 2, 1)
1 2 3

1 1
1 2

1 1 2
3 3

2 4

1 1 1
1 1

2 2

3 4 5
1 1

2 2

1 1 1
1 2

2 3

While the following are invalid as semistandard tableaux:

ν = (4, 2, 1) ν = (5, 2)
3 2 1

1 1
1 2

1 1 2
1 2

1 1
(row 1 not weakly increasing) (column 2 not strictly increasing)
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• (Reverse lattice word constraint) A word w1 . . . wr is said to be a lattice
word if, for each s 6 r, the subsequence w1 . . . ws contains at least as
many ones as twos, at least as many twos as threes, and so on. For
example, 11123211 and 12312111 are lattice words while 1114 and
12321111 are not (in the first case because there are more fours than
threes in 1114, and in the second case because there are more twos
than ones in the subsequence 1232).

A skew tableau is said to satisfy the reverse lattice word constraint if a
lattice word is obtained by reading its entries from top to bottom and
from right to left (as in Hebrew). The following are two examples for
skew tableaux satisfying the reverse lattice word constraint.

1 2 1
1 2

3 1

−→ 121|21|13

1 1 1
1 2

2 3

−→ 111|21|32

Definition 149. A skew tableaux with shape λ\µ and content ν which is
semistandard and satisfies the reverse lattice word constraint is called a
Littlewood-Richardson tableau.

As an example, the following are the two valid Littlewood-Richardson
tableaux with shape λ\µ = (6, 3, 2)\(3, 1) and content ν = (4, 2, 1):

1 1 1
1 2

2 3

1 1 1
2 2

1 3

,

while the following tableau is invalid as a Littlewood-Richardson tableau
since it does not satisfy the reverse lattice word constraint:

1 1 1
1 3

2 2

.

We conclude that cλµν = 2.

c.2 the littlewood richardson rule

Theorem 150 (Littlewood-Richardson rule). The Littlewood-Richardson coeffi-
cient, cλµ,ν, is equal to the number of Littlewood-Richardson tableaux with shape
λ\µ and content ν.

Proof. See [114, 65], for example.

Proposition 151. Consider n > 2 and any positive integers p,q such that
p+ q = n. Then the following decomposition holds:

ρ(n−1,1) ↓Sp×Sq≡ (ρ(p)⊗ ρ(q))⊕ (ρ(p−1,1)⊗ ρ(q))⊕ (ρ(p)⊗ ρ(q−1,1)).
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Proof. We first claim that the topmost row of any Littlewood-Richardson
tableau is filled only with ones. To see why, notice that the reverse lattice
word constraint forces the rightmost label of the topmost row to be labeled
with a one. The semistandard constraint (that ensures that rows are weakly
increasing) then forces all remaining entries to also be labeled one.

We now enumerate the possible Littlewood-Richardson tableaux for
λ = (n − 1, 1). We consider two cases: when µ = (p − 1, 1) and when
µ = (p).

• If µ = (p− 1, 1), then λ\µ consists of a single row. By our claim above,
there must be only one Littlewood-Richardson tableau consistent
with λ\µ — the one labeled with all ones (i.e., with content ν = (q)).
Therefore we have:

cλµ,ν =


1 if ν = (q)

0 if ν = (q− 1, 1)

0 otherwise

.

• If µ = (p), then λ\µ consists of two rows with no shared columns
since we assumed n > 2. As before, the first row of λ\µ must be
filled with ones. The second row (consisting of just one box) can be
filled with either a one or a two, yielding two possible content vectors:
ν = (q) or ν = (q− 1, 1). Therefore we have:

cλµ,ν =
{
1 if ν = (q) or (q− 1, 1) .

Collecting the triplets for which cλµ,ν = 1 and using Theorem 150 shows
that

ρ(n−1,1) ↓Sp×Sq≡ (ρ(p)⊗ ρ(q))⊕ (ρ(p−1,1)⊗ ρ(q))⊕ (ρ(p)⊗ ρ(q−1,1)).

A similar (but more involved) analysis can be applied to decompose the
second order irreducibles, which we summarize below (proofs omitted).

Proposition 152. Let n > 2 and p,q be any positive integers such that p+q = n.
Then the following decomposition holds:

ρ(n−2,2) ↓Sp×Sq≡(ρ(p) ⊗ ρ(q))⊕ (ρ(p) ⊗ ρ(q−1,1))⊕ (ρ(p) ⊗ ρ(q−2,2))⊕
(ρ(p−1,1) ⊗ ρ(q))⊕ (ρ(p−1,1) ⊗ ρ(q−1,1))⊕
(ρ(p−2,2) ⊗ ρ(q)),

except in the following exceptional boundary cases for p (the same rules apply for
q):

• (p = 3) If p = 3, remove the term ρ(p−2,2) ⊗ ρ(q).
• (p = 2) If p = 2, remove the terms ρ(p−1,1) ⊗ ρ(q) and ρ(p−2,2) ⊗ ρ(q).
• (p = 1) If p = 1, we recover the branching rule [114] and remove all

terms except ρ(p) ⊗ ρ(q−1,1) and ρ(p) ⊗ ρ(q−2,2).
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Proposition 153. Let n > 2 and p,q be any positive integers such that p+q = n.
Then the following decomposition holds:

ρ(n−2,1,1) ↓Sp×Sq≡ (ρ(p) ⊗ ρ(q−1,1))⊕ (ρ(p) ⊗ ρ(q−2,1,1))⊕
(ρ(p−1,1) ⊗ ρ(q))⊕ (ρ(p−1,1) ⊗ ρ(q−1,1))⊕
(ρ(p−2,1,1) ⊗ ρ(q)),

except in the following exceptional boundary cases for p (the same rules apply for
q):

• (p = 2) If p = 2, remove the term ρ(p−2,1,1) ⊗ ρ(q).
• (p = 1) If p = 1, we recover the branching rule and remove all terms

except ρ(p) ⊗ ρ(q−1,1) and ρ(p) ⊗ ρ(q−2,2).

c.3 marginal preservation guarantees

We now state a few properties of partitions and Littlewood-Richardson
coefficients in order to prove the Join and Split guarantees.

Definition 154. Let λ = (λ1, . . . , λ`) be a partition of n. The height of λ is
defined to be `.

Definition 155. Let λ be a partition of n and µ a partition of p 6 n. We say
that µ is a subpartition of λ if for every i, µi 6 λi.

Lemma 156. Define the partition:

λMINs = (n− s, 1, . . . , 1︸ ︷︷ ︸
s times

),

for some 0 6 s < n, and the set Λs = {µ : µ = (n− r, . . . ) for some r 6 s.}.
The following three statements are equivalent.

1. µD λMINs .

2. µ ∈ Λs.

3. height(µ) 6 height(λMINs ) = s+ 1.

Lemma 157. Define the partitions:

λMIN = (n− s, 1, . . . , 1︸ ︷︷ ︸
s times

), µMIN = (p− k, 1, . . . , 1︸ ︷︷ ︸
k times

), (C.2)

where k = min(s,p− 1). If λ is any partition of n such that λD λMIN, then for
any partition µ of p which is also a subpartition of λ, we have µD µMIN.

Proof. By Lemma 156, height(λ) 6 height(λMIN) = s+ 1. But since µ is a
subpartition of λ, we also have that height(µ) 6 height(λ), and since µ is
a partition of p, height(µ) 6 p. Putting these inequalities together, we see
that height(µ) 6 min(p, s+ 1). Finally,

height(µMIN) = k+ 1 = min(s,p− 1) + 1 = min(p, s+ 1),

showing that height(µ) 6 height(µMIN). By Lemma 156 again, we con-
clude that µD µMIN.
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Lemma 158. The LR coefficient cλµν = 0 unless both µ and ν are subpartitions of
λ.

Proof. This fact follows directly from the Littlewood-Richardson rule [114].

Corollary 159. The set of Fourier coefficients:

{f̂µ, ĝν : µ is a partition of p,ν is a partition of q, and µ,ν are both subpartitions of λ},

is sufficient for constructing ĥλ for any partition λ, of n = p+ q.

Proof of Theorem 68. We need to be able to construct ĥλ at all partitions λ
such that λD λMIN. By Corollary 159, we need subpartitions µ and ν of λ
at all λD λMIN, but by Lemma 157, all such subpartitions are above µMIN

and νMIN with respect to the dominance ordering, respectively. �

Proof of Theorem 69. Let µ = (µ1,µ2, . . . ,µ`) be any partition of p such
that µD µMIN. By Lemma 156, we have that height(µ) 6 height(µMIN) =
min(p, s+ 1). Define the partition µ̃ = (µ1 +n− p,µ2, . . . ,µ`). Two things
are immediate: first, µ is a subpartition of µ̃, and second, since µ is a
partition of p, µ̃ is a partition of n. We also have, by Lemma 156 again, that

height(µ̃) = height(µ) 6 min(p, s+ 1) 6 s+ 1 = height(λMIN),

and therefore it must be the case that µ̃D λMIN. Finally, we have that
c
µ̃
µ,(q) = 1 exactly. �

c.3.1 Lexicographical order preservation guarantees

Recall that lexicographical comparisons induce a total ordering on the set
of partitions of n, and we will denote the index of a particular partition λ
in the lex ordering by lexn(λ). For example, the lex ordering for partitions
of n = 4 is given by:

lexn(λ) 1 2 3 4 5

λ (4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

It is known that the lexicographical ordering is a refinement of the domi-
nance ordering.

Proposition 160. Consider partitions µ, ν and λ of p, q, and n, respectively
(where p+ q = n). If lexn(λ) < lexp(µ) (or similarly, if lexn(λ) < lexq(ν)),
then cλµν = 0.

Before proving the proposition, we define the following operation which
will allow us to compare partitions of p with partitions of n.

Definition 161. Given a partition µ = (µ1,µ2, . . . ) of p, the partition µ ↑np
is a partition of n given by µ ↑np= (µ1+n−p,µ2,µ3, . . . ). Thus µ and µ ↑np
agree on all parts except the first.
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Lemma 162. Let µ be a partition of p. The following inequality holds: lexp(µ) 6
lexn(µ ↑np).

Proof. We proceed by induction on lexp(µ). First, the lemma is obvious
when lexp(µ) = 1 (when µ = (p)).

Now we consider the case where lexp(µ) > 1. Let µ ′ be any partition of
p with µ ′ ≺ µ. First, we remark that (µ ′) ↑np≺n µ ↑np since we are adding
n− p to both µ ′1 and µ1.

By the inductive hypothesis, we have that

lexp(µ
′) 6 lexn

((
µ ′
)
↑np
)

< lexn

(
µ ↑np

)
.

Since we have shown that lexp(µ
′) < lexn(µ ↑np) for every µ ′ such that

µ ′ ≺p µ, we conclude that lexp(µ) 6 lexn(µ ↑np).

Proof of Proposition 160. The assumption is that lexn(λ) < lexp(µ). By
Lemma 162, it must also be the case that:

lexn(λ) < lexn(µ ↑np). (C.3)

By definition of the lex ordering, Equation C.3 means that there exists some
i for which

(
µ ↑np

)
i
< λi and

(
µ ↑np

)
j
= λj for all j < i.

We now argue that µ cannot possibly be a subpartition of λ, which
will imply that cλµν = 0 by the Littlewood-Richardson rule. We define the
following partitions:

λchop = (λi, λi+1, . . . ), µchop = (µi,µi+1, . . . ).

Clearly, λchop is a partition of a = n−
∑i−1
j=1 λj and µchop is a partition of

b = p−
∑i−1
j=1 µj. We will prove that µchop is not a subpartition of λchop,

which will then imply that µ is not a subpartition of λ.
Now we know that

(
µ ↑np

)
1
6 λ1 (if it were greater, then the assumption

in Equation C.3 would be false). Thus, µ1 +n− p 6 λ1. Or rearranging,

µ1 6 λ1 −n+ p. (C.4)

Thus, we have:

b = p−

i−1∑
j=1

µj = p− µ1 −

i−1∑
j=2

µj,

> p− (λ1 −n+ p) −

i−1∑
j=2

λj,(
by Equation C.4 and since µj = λj

for j = 2, . . . , i− 1 by our definition of i)

> n−

i−1∑
j=1

λj,

> a.
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To summarize, we have shown that λchop and µchop are partitions of a
and b, respectively, where b > a, but µi < λi. Under these conditions, it
is impossible for µchop to be a subpartition of λchop. We therefore must
conclude that µ is not a subpartition of λ and hence, that cλµν = 0. �

c.4 proof that split returns exact marginals

The proof (of Theorem 72) that the splitting procedure gives exact marginals
when the first order condition is satisfied comes from a simple modification
to the existing proof of Proposition 67 which we now give below.

Consider the marginalization problem in which we compute the marginal
distribution of σp = [σ(1), . . . ,σ(p)] using:

f(σp) =
∑
σq∈Sq

h([σp,σq]).

The Fourier transform of the marginal distribution at partition µ of p is
given by:

f̂µ =
∑
σp∈Sp

f(σp)ρµ(σp), (C.5)

(Definition 24) (C.6)

=
∑
σp∈Sp

( ∑
σq∈Sq

h(σp,σq)
)
ρµ(σp), (C.7)

(Expand f(σp)) (C.8)

=
∑

σ∈Sp×Sq

h(σ)
(
ρµ ⊗ ρ(q)(σ)

)
, (C.9)

(ρ(q) = 1 and rearrange) (C.10)

where ρ(q) is the trivial representation on Sq (recall that ρ(q)(σq) = 1

for all σq ∈ Sq). We recognize the expression in line C.9 as being equal
to one of the blocks from line 12.6 in the proof of Proposition 67 for
appropriately chosen λ (i.e., is the Fourier coefficient matrix returned by the
Split algorithm), and we therefore conclude that the splitting operation
will return the correct marginal distribution of h even if probabilistic
independence fails to hold.

We make two additional remarks about the above argument:

• In line 12.2 of the proof of Proposition 67, we make the assumption
that the distribution assigns zero probability mass to any permutation
outside of Sp × Sq.

• Note that independence assumption remains necessary for the join
operation, and that while Split(Join(f̂, ĝ)) should return f̂ and ĝ

exactly, Join(Split(ĥ)) will not exactly return ĥ unless h happens to
already factor into independent f and g.
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IN this appendix, we consider the general problem of finding an orthog-
onal operator which decomposes an arbitrary complex representation,

X(σ), of a finite group G 1. This coupling matrix problem arises in our
formulation of Bayesian conditioning (Chapter 8) as well as the Fourier
domain probabilistic independence algorithms of Chapter 12. Unlike the
Clebsch-Gordan series or the Littlewood-Richardson coefficients which are
basis-independent numbers, intertwining operators must be recomputed
if we change the underlying basis by which the irreducible representation
matrices are constructed. However, for a fixed basis, we remind the reader
that these intertwining operators need only be computed once and for
all and can be stored in a table for future reference. Let X be any degree
d group representation of G, and let Y be an equivalent direct sum of
irreducibles, e.g.,

Y(σ) =
⊕
ν

zν⊕
`=1

ρν(σ), (D.1)

where each irreducible ρν has degree dν. We would like to compute an
invertible (and orthogonal) operator C, such that C ·X(σ) = Y(σ) ·C, for all
σ ∈ G. Throughout this section, we will assume that the multiplicities zν
are known.

For concreteness, we focus on the problem of computing Clebsch-Gordan
coefficients, where we would set X = ρλ ⊗ ρµ, and the multiplicities
would be given by the Clebsch-Gordan series (Equation B.1). However,
the same ideas hold for computing the coupling matrices correspond to the
Littlewood-Richardson decomposition and for finding the matrix which
relates marginal probabilities to irreducible coefficients (where we would
set X = τλ, and the multiplicities would be given by the Kostka numbers
(Equation 5.10)).

d.1 an algorithm for computing coupling matrices

We will begin by describing an algorithm for computing a basis for the
space of all possible intertwining operators which we denote by:

Int[X;Y] = {C ∈ Rd×d : C ·X(σ) = Y(σ) ·C, ∀σ ∈ G}.

We will then discuss some of the theoretical properties of Int[X;Y] and show
how to efficiently select an orthogonal element of Int[X;Y].

1 Though the fundamental ideas in this section hold for a general finite group, we will
continue to index irreducible by partitions and think of representations as being real-valued.
To generalize the results, one can simply replace all transposes in this section by adjoints
and think of η as indexing over the irreducibles of G rather than partitions.

261
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Our approach is to naively2 view the task of finding elements of Int[X;Y]
as a similarity matrix recovery problem, with the twist that the similarity
matrix must be consistent over all group elements. To the best of our
knowledge, the technique presented in this section is original. We first cast
the problem of recovering a similarity matrix as a nullspace computation.

Proposition 163. Let A,B,C be matrices and let KAB = I⊗A−BT ⊗ I. Then
AC = CB if and only if vec(C) ∈ Nullspace(KAB).

Proof. A well known matrix identity [132] states that if A,B,C are matrices,
then vec(ABC) =

(
CT ⊗A

)
vec(B). Applying the identity to AC = CB, we

have:

vec(ACI) = vec(ICB),

and after some manipulation:(
I⊗A−BT ⊗ I

)
vec(C) = 0,

showing that vec(C) ∈ Nullspace(KAB).

For each σ ∈ G, the nullspace of the matrix K(σ) constructed using the
above proposition as:

K(σ) = I⊗ Y(σ) −X(σ)⊗ I, (D.2)

where I is a d× d identity matrix, corresponds to the space of matrices Cσ
such that

Cσ ·X(σ) = Y(σ) ·C, for all σ ∈ G.

To find the space of intertwining operators which are consistent across all
group elements, we need to find the intersection:⋂

σ∈G
Nullspace(K(σ)). (D.3)

At first glance, it may seem that computing the intersection might require
examining n! nullspaces if G = Sn, but as luck would have it, most of
the nullspaces in the intersection are extraneous. We use the following
proposition which says that it suffices to find a similarity matrix consistent
on any set of generators of the group.

Proposition 164. Let X and Y be representations of finite group G and suppose
that G is generated by the elements σ1, . . . ,σm. If there exists an invertible linear
operator C such that C ·X(σi) = Y(σi) ·C for each i ∈ {1, . . . ,m}, then X and Y
are equivalent as representations with C as the intertwining operator.

2 In implementation, we use a more efficient algorithm for computing intertwining operators
known as the Eigenfunction Method (EFM) [18]. Unfortunately, the EFM is too complicated for
us to describe in this thesis. The method which we describe in this appendix is conceptually
simpler than the EFM and generalizes easily to groups besides Sn.
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Proof. We just need to show that C is a similarity transform for any other
element of G as well. Let π be any element of G and suppose π can be
written as the following product of generators: π =

∏n
i=1 σi. It follows

that:

C−1 ·Y(π) ·C = C−1 ·Y

(∏
i

σi

)
·C = C−1 ·

(∏
i

Y(σi)

)
·C

= (C−1 ·Y(σ1) ·C)(C−1 ·Y(σ2) ·C) · · · (C−1 ·Y(σm) ·C)

=
∏
i

(
C−1 ·Y(σi) ·C

)
=
∏
i

X(σi) = X

(∏
i

σi

)
= X(π)

Since this holds for every π ∈ G, we have shown C to be an intertwining
operator between the representations X and Y.

The good news is that despite having n! elements, Sn can be generated
by just two elements, namely, (1, 2) and (1, 2, . . . ,n) (see Chapter 2 for
a proof), and so the problem reduces to solving for the intersection of
two nullspaces, (K(1, 2)∩K(1, 2, . . . ,n)), which can be done using standard
numerical methods. Typically, the nullspace is multidimensional, showing
that, for example, the Clebsch-Gordan coefficients for ρλ ⊗ ρµ are not
unique even up to scale.

Because Int[X;Y] contains singular operators (the zero matrix is a member
of Int[X;Y], for example), not every element of Int[X;Y] is actually a legitimate
intertwining operator as we require invertibility. In practice, however, since
the singular elements correspond to a measure zero subset of Int[X;Y], one
method for reliably selecting an operator from Int[X;Y] that “works” is
to simply select a random element from the nullspace to be C. It may,
however, be desirable to have an orthogonal matrix C which works as an
intertwining operator. In the following, we discuss an object called the
Commutant Algebra which will lead to several insights about the space
Int[X;Y], and in particular, will lead to an algorithm for ‘modifying’ any
invertible intertwining operator C to be an orthogonal matrix.

Definition 165. The Commutant Algebra of a representation Y is defined to
be the space of operators which commute with Y:3

ComY = {S ∈ Rd×d : S · Y(σ) = Y(σ) · S, ∀σ ∈ G}.

The elements of the Commutant Algebra of Y can be shown to always take
on a particular constrained form (shown using Schur’s Lemma in [114]). In
particular, every element of ComY takes the form

S =
⊕
ν

(Mzν ⊗ Idν) , (D.4)

where Mzν is some zν × zν matrix of coefficients and Idν is the dν ×
dν identity (recall that the zν are the multiplicities from Equation D.1).
Moreover, it can be shown that every matrix of this form must necessarily
be an element of the Commutant Algebra.

The link between ComY and our problem is that the space of intertwining
operators can be thought of as a ‘translate’ of the Commutant Algebra.

3 Notice that the definition of the Commutant Algebra does not involve the representation X.
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Lemma 166. There exists a vector space isomorphism between Int[X;Y] and ComY .

Proof. Let R be any invertible element of Int[X;Y] and define the linear map
f : ComY → Rd×d by: f : S 7→ (S · R). We will show that the image of f is
exactly the space of intertwining operators. Consider any element σ ∈ G:

(S · R) ·X(σ) · (S · R)−1 = S · R ·X(σ) · R−1 · S−1,

= S · Y(σ) · S−1 (since R ∈ Int[X;Y]),

= Y(σ) (since S ∈ ComY).

We have shown that S · R ∈ Int[X;Y], and since f is linear and invertible, we
have that Int[X;Y] and ComY are isomorphic as vector spaces.

Using the lemma, we can see that the dimension of Int[X;Y] must be
the same as the dimension of ComY , and therefore we have the following
expression for the dimension of Int[X;Y].

Proposition 167.

dim Int[X;Y] =
∑
ν

z2ν.

Proof. To compute the dimension of Int[X;Y], we need to compute the di-
mension of ComY , which can be accomplished simply by computing the
number of free parameters in Equation D.4. Each matrix Mzν is free and
yields z2ν parameters, and summing across all irreducibles ν yields the
desired dimension.

To select an orthogonal intertwining operator, we will assume that we
are given some invertible R ∈ Int[X;Y] which is not necessarily orthogonal
(such as a random element of the nullspace of K (Equation D.2)). To find
an orthogonal element, we will ‘modify’ R to be an orthogonal matrix by
applying an appropriate rotation, such that R · RT = I. We begin with a
simple observation about R · RT .

Lemma 168. If both X and Y are orthogonal representations and R is an invertible
member of Int[X;Y], then the matrix R · RT is an element of ComY .

Proof. Consider a fixed σ ∈ G. Since R ∈ Int[X;Y], we have that:

X(σ) = R−1 · Y(σ) · R.

It is also true that:

X(σ−1) = R−1 · Y(σ−1) · R. (D.5)

Since X(σ) and Y(σ) are orthogonal matrices by assumption, Equation D.5
becomes:

XT (σ) = R−1 · YT (σ) · R.
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Algorithm D.1: Pseudocode for computing an orthogonal intertwining oper-
ators. The input is a degree d orthogonal matrix representation X evaluated at
permutations (1, 2) and (1, . . . ,n). The output of ComputeCG is a matrix Cν with
orthogonal rows such that CTν · ⊕zνρν ·Cν = X.

ComputeCG(X((1, 2)),X((1, 2, . . . ,n))):

K1 ← Id×d ⊗ (⊕zνρν(1, 2)) −X(1, 2)⊗ Id×d;
K2 ← Id×d ⊗ (⊕zνρν(1, . . . ,n))X(1, . . . ,n)⊗ Id×d;
K← [K1;K2]; //Stack K1 and K2
v← SparseNullspace

(
K, z2ν

)
; //Find the d2ν-dimensional nullspace

R← Reshape(v; zνdν,d); //Reshape v into a (zνdν)× d matrix
M← KroneckerFactors(R · RT ); //Find M such that R · RT =M⊗ Idν
Sν ← Eigenvectors(M) ;
Cν ← STν · R ;
NormalizeRows(Cν);
return (Cν);

Taking transposes,

X(σ) = RT · Y(σ) · (R−1)T .

We now multiply both sides on the left by R, and on the right by RT ,

R ·X(σ) · RT = R · RT · Y(σ) · (R−1)T · RT

= R · RT · Y(σ).

Since R ∈ Int[X;Y],

Y(σ) · R · RT = R · RT · Y(σ),

which shows that R · RT ∈ ComY .

We can now state and prove our orthogonalization procedure, which
works by diagonalizing the matrix R · RT . Due to its highly constrained
form, the procedure is quite efficient.

Theorem 169. Let X be any orthogonal group representation of G and Y an
equivalent orthogonal irreducible decomposition (As in Equation D.1). Then for any
invertible element R ∈ Int[X;Y], there exists an (efficiently computable) orthogonal
matrix T such that the matrix T · R is an element of Int[X;Y] and is orthogonal.

Proof. Lemma 168 and Equation D.4 together imply that the matrix R · RT
can always be written in the form

R · RT = ⊕ν (Mzν ⊗ Idν)

Since R · RT is symmetric, each of the matrices Mzν is also symmetric and
must therefore possess an orthogonal basis of eigenvectors. Define the
matrix Szν to be the matrix whose columns are the eigenvectors of Mzν .

The matrix S = ⊕ν(Szν ⊗ Idν) has the following two properties:
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1. (ST · R)(ST · R)T is a diagonal matrix:

Each column of S is an eigenvector of R · RT by standard properties
of the direct sum and Kronecker product. Since each of the matrices,
Szν , is orthogonal, the matrix S is also orthogonal. We have:

(ST · R)(ST · R)T = ST · R · RT · S,

= S−1 · R · RT · S,

= D,

where D is a diagonal matrix of eigenvalues of R · RT .

2. ST · R ∈ Int[X;Y]:

By Equation D.4, a matrix is an element of ComY if and only if it takes
the form ⊕ν(Szν ⊗ Idν). Since S can be written in the required form,
so can ST . We see that ST ∈ ComY , and by the proof of Lemma 166,
we see that ST · R ∈ Int[X;Y].

Finally, setting T = D1/2 · ST makes the matrix T · R orthogonal (and
does not change the fact that T · R ∈ Int[X;Y]).

We see that the complexity of computing T is dominated by the eigenspace
decomposition of Mzν , which is O

(
z3ν
)
. Pseudocode for computing orthog-

onal intertwining operators is given Algorithm D.1.

d.2 conclusion

In this chapter we have introduced a simple method for computing coupling
matrices between generic (finite) group representations and their irreducible
decompositions. Surprisingly, there is little related work for this specific
problem on the symmetric group. Most authors have focused on the basis
independent problem of determining multiplicities within a decomposition
(such as the Clebsch-Gordan series, Littlewood-Richardson coefficients
and Kostka numbers) and have ignored the more numerical problem of
determining specific intertwining matrices. There have been exceptions
however, such as the work of Chen et al. (see [18] for example), who
pioneered the use of the EFM (Eigenfunction method) for a number of
numerical problems in group representation theory.

Our method has the advantage of being simple to understand and im-
plement and requires little specific knowledge about the underlying group
(as long as one can provide representation matrices evaluated at a finite set
of group generators). For the symmetric group, we showed that only two
representation matrices are needed as input and that our method applies
to at least three problems: computing Clebsch-Gordan coupling matrices,
Littlewood-Richardson coupling matrices, as well as matrices which convert
between a matrix of marginals and its irreducible decomposition.

On the other hand, there is room for improvement. For example, our
method currently does not exploit problem-specific domain knowledge
that might otherwise lead to faster running times. For example, there are
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many known symmetries [18] in the Clebsch-Gordan coupling matrices
that we do not explicitly utilize to improve performance. Finding ways to
leverage known sparsity and symmetry properties may lead to much faster
results in practice. Finally, we note that a C++/Python implementation of
the methods in this appendix is publicly available as part of our PROPS
Toolbox [88].
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E
S T R U C T U R E L E A R N I N G A P P E N D I X

THIS section includes the proofs for Chapter 14.

e.1 sample complexity proofs

Lemma 170 (adapted from [51]). The entropy of a discrete random variable
with arity R can be estimated to within accuracy ∆ with probability 1−β using
O
(
R2

∆2
log2 R∆ log Rβ

)
i.i.d samples and the same time.

Lemma 171. The collection of mutual informations Ii;j,k can be estimated to
within accuracy ∆ for all triplets (i, j,k) with probability at least 1− γ using
S(∆,γ) ≡ O

(
n2

∆2
log2 n∆ log n

4

γ

)
i.i.d. samples and the same amount of time.

Proof. Fix a 0 < γ 6 1 and ∆. For any fixed triplet (i, j,k), Hoffgen’s result
(Lemma 170) implies that H(σi;σj < σk) can be estimated with accuracy ∆

with probability at least 1−γ/n3 using O
(
n2

∆2
log2 n∆ log n

4

γ

)
i.i.d. samples

since the variable (σi,σj < σk) has arity 2n and setting β ≡ γ
n3

.
Estimating the mutual information for the same triplet therefore requires

the same sample complexity by the expansion: Ii;j,k = H(σi) +H(σj <

σk) −H(σi;σj < σk). Now we use a simple union bound to bound the
probability that the collection of mutual informations over all triplets is
estimated to within ∆ accuracy. Define ∆i,j,k ≡ Ii;j,k − Îi;j,k.

P(|∆i,j,k| < ∆, ∀(i, j,k)) > 1−
∑
i,j,k

P(|∆i,j,k| > ∆) > 1−n
3 · γ
n3
> 1− γ.

Lemma 172. Fix k 6 n/2. and let A be a k-subset of {1, . . . ,n} with A riffle
independent of its complement B. Let A ′ be a k-subset with A ′ 6= A or B. If A and
B are each ε-third order strongly connected, we have F̃(A ′) = F̃(B ′) > ψ(n,k) ·ε,
where ψ(n,k) ≡ (n− k)(n− 2k).

Proof. Let us first establish some notation. Given a subset X ⊂ {1, . . . ,n},
define

ΩintX ≡ {(x;y, z) : x,y, z ∈ X}.

Thus ΩintA and ΩintB are the sets of triplets whose indices are all internal
to A or internal to B respectively. We define ΩcrossA ′,B ′ to be the set of triplets
which “cross” between the sets A and B:

ΩcrossA ′,B ′ ≡ {(x;y, z) : x ∈ A,y, z ∈ B, or x ∈ B,y, z ∈ A}.

269
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The goal of this proof is to use the strong connectivity assumptions to
lower bound F̃(A ′). In particular, due to strong connectivity, each triplet
inside ΩcrossA ′,B ′ that also lies in either ΩintA or ΩintB must contribute at
least ε to the objective function F̃(A ′). It therefore suffices to lower bound
the number of triplets which cross between A ′ and B ′, but are internal
to either A or B (i.e., |ΩcrossA ′,B ′ ∩ (ΩintA ∪ΩintB )|). Define ` ≡ |A ∩A ′| and
note that 0 6 ` < k. It is straightforward to check that: |A ∩ B ′| = k− `,
|B∩A ′| = k− `, and |B∩B ′| = (n− k) − (k− `) = n+ `− 2k.

|ΩcrossA′,B′ ∩ (ΩintA ∪ΩintB )| = |ΩcrossA′,B′ ∩ΩintA |+ |ΩcrossA′,B′ ∩ΩintB |,

> `(k− `)2 + `2(k− `) + (k− `)(n+ `− 2k)2 + (n+ `− 2k)(k− `)2,

> (k− `) ((n− k)(n− 2k) + `n) ,

> k ((n− k)(n− 2k) + kn) .

We do want the bound above to depend on `. Intuitively, for a fixed k and
n, the above expression is minimized when either ` = 0 or k− 1 (a more
formal argument is shown below in the proof of Lemma 173). Plugging
` = 0 and k− 1 and bounding from below yields:

|ΩcrossA′,B′ ∩ (ΩintA ∪ΩintB )| > min (k(n− k)(n− 2k), (n− k)(n− 2k) +n(k− 1)]) ,

> (n− k)(n− 2k).

Finally due to strong connectivity, we know that for each triplet in ΩintA ∪
ΩintB , we have Ix;y,z > ε, thus each edge in ΩcrossA ′,B ′ ∩ (ΩintA ∪ΩintB ) con-
tributes at least ε to F̃(A ′), establishing the desired result.

Lemma 173. Under the same assumptions as Lemma 172, p(n,k, `) = (k −

`) ((n− k)(n− 2k) + `n) is minimized at either ` = 0 or k− 1.

Proof. Let α = (n − k)(n − 2k). We know that α > 0 since k 6 n/2 by
assumption (and equals zero only when k = n/2). We want to find the
` ∈ {0, . . . ,k− 1} which minimizes the concave quadratic function p(`) =
(k − `)(α + `n), the roots of which are ` = k and ` = −α/n (note that
−α/n 6 0. The minimizer is thus the element of {0, . . . ,k− 1} which is
closest to either of the roots.

Theorem 174. Let A be a k-subset of {1, . . . ,n} with A riffle independent of its
complement B. If A and B are each ε-third order strongly connected, then given
S(∆, ε) ≡ O

(
n4

ε2
log2 n

2

ε log n
4

γ

)
i.i.d. samples, the minimum of F̂ (evaluated

over all k-subsets of {1, . . . ,n}) is achieved at exactly the subsets A and B with
probability at least 1− γ.

Proof. Let A ′ be a k-subset with A ′ 6= A or B. Our goal is to show that
F̂(A ′) > F̂(A).

Denote the error between estimated mutual information and true mutual
information by ∆i;j,k ≡ Îi;j,k − Ii;j,k. We have:
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F̂(A ′) − F̂(A) =

 ∑
(i,j,k)∈Ωcross

A′ ,B′

Îi;j,k

−

 ∑
(i,j,k)∈ΩcrossA,B

Îi;j,k


= F̃(A ′) − F̃(A) +

∑
(i,j,k)∈Ωcross

A′ ,B′

∆i;j,k −
∑

(i,j,k)∈ΩcrossA,B

∆i;j,k

> ψ(n,k) · ε+
∑

(i,j,k)∈Ωcross
A′ ,B′

∆i;j,k −
∑

(i,j,k)∈ΩcrossA,B

∆i;j,k

(by Lemma 172 and F̃(A) = 0)

Now assume that all of the estimation errors ∆ are uniformly bounded as:

|∆i;j,k| 6
ε

4

(
ψ(n,k)
n2k− k2n

)
. (E.1)

And note that |ΩcrossA ′,B ′ | = |ΩcrossA,B | = k2(n− k) + k(n− k)2 = n2k− k2n.
We have: ∑

(i,j,k)∈Ωcross
A′ ,B′

|∆i;j,k|−
∑

(i,j,k)∈ΩcrossA,B

|∆i;j,k| 6 2 · (n2k− k2n) ·
ε

4

(
ψ(n,k)
n2k− k2n

)

6
εψ(n,k)

2

6 ε ·ψ(n,k)

Combining this bound on the estimation errors with the bound on
F̂(A ′) − F̂(A) yields:

F̂(A ′) − F̂(A) > εψ(n,k) −

 ∑
(i,j,k)∈Ωcross

A′ ,B′

|∆i;j,k|−
∑

(i,j,k)∈ΩcrossA,B

|∆i;j,k|


>
εψ(n,k)

2

> 0,

which is almost what we want to show. How many samples do we require
to achieve the bound assumed in Equation E.1 with high probability?
Observe that the bound simplifies as,

ε

4

(
ψ(n,k)
n2k− k2n

)
=
ε

4

(
(n− k)(n− 2k)

nk(n− k)

)
=
ε

4

(
n− 2k

nk

)
,

which behaves like O (ε) when k is O(1), but like O
(
ε
n

)
when k is O(n).

Applying the sample complexity result of Lemma 171 with ∆ = O(ε/n),
we see that given O

(
n4

ε2
log2 n

2

ε log n
4

γ

)
i.i.d. samples, the bound in Equa-

tion E.1 holds with probability 1− γ, concluding the proof.

e.2 log-likelihood interpretations

If we examine the KL divergence objective introduced in Section 14.2, it
is a standard fact that minimizing Equation 14.2 is equivalent to find the
structure which maximizes the log-likelihood of the training data.
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F[A,B] = DKL(ĥ(σ) ||m(τA,B(σ))f(φA(σ))g(φB(σ))),

=
∑
σ∈Sn

ĥ(σ) log

(
ĥ(σ)

m(τA,B(σ))f(φA(σ))g(φB(σ))

)
,

= const. −
∑
σ∈Sn

ĥ(σ) log
(
m(τA,B(σ))f(φA(σ))g(φB(σ))

)
,

= const. − log

(
m∏
i=1

m(τA,B(σ
(i)))f(φA(σ

(i)))g(φB(σ
(i)))

)
.

In the above (with some abuse of notation), m, f and g are estimated using
counts from the training data. The equivalence is significant because it
justifies structure learning for data which is not necessarily generated from
a distribution which factors into riffle independent components. Using a
similar manipulation, we can rewrite our objective function (Equation 14.3)
as:

F[A,B] = I(σ(A) ; φB(σ)) + I(σ(B) ; φA(σ)),

= const. − log

(
m∏
i=1

ψA(φA(σ
(i)), τA,B(σ

(i)))g(φB(σ
(i)))

)

− log

(
m∏
i=1

f(φA(σ
(i)))ψB(φB(σ

(i)), τA,B(σ
(i)))

)
,

which we can see to be a “composite” of two likelihood functions. We
are evaluating our data log-likelihood first under a model in which the
absolute ranks of items in A are independent of relative ranks of items
in B, and secondly under a model in which the absolute ranks of items
in B are independent of relative ranks of items in A. Here again, ψA
and ψB are estimated using counts of the training data. We see that if
these distributions, ψA, ψB factor along their inputs, then optimizing the
objective function is equivalent to optimizing the likelihood under the
riffle independent model. Thus, if the data is already riffle independent
(or nearly riffle independent), then the structure learning objective can
indeed to be interpreted as maximizing the log-likelihood of the data, but
otherwise there does not seem to be a clear equivalence between the two
objective functions.

e.3 why testing for independence of relative ranks is insuf-
ficient

Why can we not just check to see that the relative ranks of A are inde-
pendent of the relative ranks of B? Another natural objective function for
detecting riffle independent subsets is:

F[A,B] ≡ I(φA(σ) ; φB(σ)). (E.2)

Equation E.2 is certainly a necessary condition for subsets A and B to be
riffle independent but why would it not be sufficient? It is easy to construct
a counterexample — simply find a distribution in which the interleaving
depends on either of the relative rankings.
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Example 175. In this example, we will consider a distribution on S4. Let A =

{1, 2} and B = {3, 4}. To generate rankings σ ∈ S4, we will draw independent
relative rankings, σA and σB, with uniform probability for each of A and B. Then
set the interleaving as follows:

τ =

{
JAABBK if σA = (1, 2)

JBBAAK otherwise
.

Finally set σ = τ · [σA,σB].
Since the relative rankings are independent, F[A,B] = 0. But since the inter-

leaving depends on the relative ranking of items in A, we see that A and B are not
riffle independent in this example.
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PA RT I A L R A N K I N G P R O O F S

IN this appendix, we provide supplementary proofs of some of the the-
oretical results from Chapter 15.

f.1 the pspan of a set is always a partial ranking

To reason about the pspan of a set of rankings, we first introduce some basic
concepts regarding the combinatorics of partial rankings. The collection of
partial rankings over Ω forms a partially ordered set (poset) where Sγ ′π ′ ≺
Sγπ if Sγπ can be obtained from Sγ ′π

′ by dropping vertical lines. For
example, on S3, we have that 1|2|3 ≺ 12|3. The Hasse diagram is the graph in
which each node corresponds to a partial ranking and a node x is connected
to node y via an edge if x ≺ y and there exists no partial ranking z such
that x ≺ z ≺ y (see [86]). At the top of the Hasse diagram is the partial
ranking 1, 2, . . . ,n (i.e., all of SΩ) and at the bottom of the Hasse diagram
lie the full rankings. See Figure 62 for an example of the partial ranking
lattice on S3.

Lemma 176. [Lebanon and Mao (2008) [86]] Given any two partial rankings
Sγπ, Sγ ′π ′, there exists a unique supremum of Sγπ and Sγ ′π ′ (a node Sγsupπsup
such that Sγπ ≺ Sγsupπsup and Sγ ′π ′ ≺ Sγsupπsup, and any other such node
is greater than Sγsupπsup). Similarly, there exists a unique infimum of Sγπ and
Sγ ′π

′.

Lemma 177. Given two partial rankings Sγπ, Sγ ′π ′, the relation Sγ ′π ′ ⊂ Sγπ
holds if and only Sγπ lies above Sγ ′π ′ in the Hasse diagram.

Proof. If Sγπ lies above Sγ ′π ′ in the Hasse diagram, then Sγ ′π ′ ⊂ Sγπ

is trivial since Sγπ can be obtained by dropping vertical bars of Sγ ′π ′.
Now given that Sγπ does not lie above Sγ ′π ′, we would like to show that
Sγ ′π

′ 6⊂ Sγπ. Let Sγinfπinf be the unique infimum of Sγπ and Sγ ′π ′ as
guaranteed by Lemma 176. By the definition of the Hasse diagram, both
Sγπ and Sγπ can be obtained by ‘dropping’ verticals from the vertical
bar representation of Sγinfπinf. Since Sγπ does not lie above Sγ ′π ′, there
must be a vertical bar that was dropped by Sγ ′π ′ which was not dropped
by Sγπ (if there does not exist such a bar, then Sγ ′π ′ ⊂ Sγπ), and hence
there must exist a pair of items i, j separated by a single vertical bar in
Sγπ but unseparated in Sγ ′π ′. Therefore there exists σ ∈ Sγ ′π ′ such that
σ(j) < σ(i) even though there exists no such σ ∈ Sγπ. We conclude that
Sγ ′π

′ 6⊂ Sγπ.

Lemma 178. For any X ⊂ Sn, pspan(X) is a partial ranking.

Proof. Consider any subset X ⊂ Sn. A partial ranking containing every
element in X must be an upper bound of every element of X in the Hasse

275
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123

1|2|3 1|3|2 2|1|3 3|1|2 2|3|1 3|2|1

1|23 12|3 13|2 2|13 3|12 23|1

Figure 62: The Hasse diagram for the lattice of partial rankings on S3.

diagram by Lemma 177. By Lemma 176, there must exist a unique least
upper bound (supremum) of X, Sγsupπsup, such that for any common upper
bound Sγπ of X, Sγπ must also be an ancestor of Sγsupπsup and hence
Sγsupπsup ⊂ Sγπ. We therefore see that any partial ranking containing X
must be a superset of Sγsupπsup. On the other hand, Sγsupπsup is itself a
partial ranking containing X. Since pspan(X) is the intersection of partial
rankings containing X, we have pspan(X) = Sγsupπsup and therefore that
pspan(X) must be a partial ranking.

f.2 supplementary proofs for the claim that rspan(x) = pspan(x)

To simplify the notation in some of the remaining proofs, we introduce the
following definition.

Definition 179 (Ties). Given a partial ranking Sγπ = Ω1| . . . |Ωk, we say
that items a1 and a2 are tied (written a1 ∼ a2) with respect to Sγσ if
a1,a2 ∈ Ωi for some i.

The following basic properties of the tie relation are straightforward.

Proposition 180.

I. With respect to a fixed partial ranking Sγπ, the tie relation, ∼, is an equiva-
lence relation on the item set (i.e., is reflexive, symmetric and transitive).

II. If there exist σ,σ ′ ∈ Sγπ which disagree on the relative ranking of items a1
and a2, then a1 ∼ a2 with respect to Sγπ.

III. If Sγπ ≺ Sγ ′π ′, and a1 ∼ a2 with respect to Sγπ, then a1 ∼ a2 with respect
to Sγ ′π ′.

IV. If a1 ∼ a2 with respect to Sγπ, and σ(a1) < σ(a3) < σ(a2) for some item
a3 ∈ Ω and some σ ∈ Sγπ, then a1 ∼ a2 ∼ a3.

Proposition 181. Given a set of rankings X as input, Algorithm 15.2 outputs
pspan(X).

Proof. We prove three things, which together prove the proposition: (1)
that the algorithm terminates, (2) that at each stage the elements of X
are contained in pspan(X), and (3) that upon termination, pspan(X) is
contained in each element of X.
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1. First we note that the algorithm must terminate in finitely many
iterations of the while loop since at each stage at least one vertical bar
is removed from a partial ranking, and when all of the vertical bars
have been removed from the elements of X, there are no disagreements
on relative ordering.

2. We now show that at any stage in the algorithm, every element
of Xt is a subset of the pspan(X). Consider Sγπ ∈ Xt such that
Sγπ ⊂ pspan(X). If Sγπ is replaced by Sγ ′π ′ in Xt+1, then we want
to show that Sγ ′π ′ ⊂ pspan(X) as well. From Algorithm 15.2, for
some i, if Sγπ = Ω1| . . . |Ωj|Ωj+1| . . . |Ωk, Sγ ′π ′ can be written as
Ω1| . . . |Ωj ∪Ωj+1| . . . |Ωk, where the vertical bar between Ωj and
Ωj+1 are deleted due to the existence of partial rankings in Xt which
disagree on the relative ordering of items a1,a2 on opposite sides
of the bar, then by Proposition 126 (II), we know that a1 ∼ a2 (with
respect to Sγπ). By transitivity (I) and (II), if a1 ∈ Ωi and a2 ∈ Ωi ′ ,
then any two elements of Ωi and Ωi ′ are also tied. By (IV), all the
items lying inΩi,Ωi+1, . . . ,Ωi ′ are thus tied with respect to pspan(X)

and therefore removing any bar between items a1 and a2 (producing,
for example, Sγ ′π ′) results in a partial ranking which is a subset of
pspan(X).

3. Finally, upon termination, if some ranking σ ∈ X is not contained
in some element Sγπ ∈ Xt, then there would exist two items a1,a2
whose relative ranking σ and Sγπ disagree upon, which is a contra-
diction. Therefore, every element Sγπ ∈ Xt contains every element of
X and thus pspan(X) ⊂ Sγπ for every Sγπ ∈ Xt.

Lemma 182. Let Sγπ = Ω1| . . . |Ωi|Ωi+1| . . . |Ωk be a partial ranking on item
set Ω, and Sγ ′π ′ = Ω1| . . . |Ωi ∪Ωi+1| . . . |Ωk, the partial ranking in which the
setsΩi andΩi+1 are merged. Let a1 ∈ ∪ij=1Ωj and a2 ∈ ∪kj=i+1Ωj. If O is any
element of CRI such that Sγπ ⊂ O and there additionally exists a ranking π̃ ∈ O

which disagrees with Sγπ on the relative ordering of a1,a2, then Sγ ′π ′ ⊂ O.

Proof. We will fix a completely decomposable O and again work with h,
the indicator distribution corresponding to O. Let σ ∈ Sγ ′π ′. To prove the
lemma, we need to establish that h(σ) > 0. Let σ0 be any element of Sγπ
such that σ0(k) = σ(k) for all k ∈ Ω\(Ωi ∪Ωi+1). Since Sγπ ⊂ supp(h) by
assumption, we have that h(σ0) > 0.

Since σ0 and σ match on all items except for those in Ωi ∪ Ωi+1,
there exists a sequence of rankings σ0,σ1,σ2, . . . ,σm = σ such that ad-
jacent rankings in this sequence differ only by a pairwise exchange of
itemsb1,b2 ∈ Ωi ∪Ωi+1. We will now show that at each step along this se-
quence, h(σt) > 0 implies that h(σt+1) > 0, which will prove that h(σ) > 0.
Suppose now that h(σt) > 0 and that σt and σt+1 differ only by the relative
ranking of items b1,b2 ∈ Ωi ∪Ωi+1 (without loss of generality, we will
assume that σt(b2) < σt(b1) and σt+1(b1) < σt+1(b2)).

The idea of the following paragraph is to use the previous lemma
(Lemma 127) to prove that σt+1 has positive probability and to do so,
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it will be necessary to argue that there exists some ranking σ ′ such that
h(σ ′) > 0 and σ ′(b1) < σ ′(b2) (i.e., σ ′ disagrees with σt on the relative
ranking of b1,b2). Let ω be any element of Sγπ. If a1 ∈ Ωi, rearrange ω
such that a1 is ranked first among elements of Ωi. If a2 ∈ Ωi+1, further
rearrange ω such that a2 is ranked last among elements of Ωi+1. Note
that ω is still an element of Sγπ after the possible rearrangements and
therefore h(ω) > 0. We can assume that ω(b2) < ω(b1) since otherwise
we will have shown what we wanted to show. Thus the relative ordering
of a1,a2,b1,b2 within ω is a1|b2|b1|a2. Note that we treat the case where
the items a1,a2,b1,b2 are distinct, but the same argument follows in the
cases when a1 = b2 or a2 = b1.

Now since π̃ disagrees with Sγπ on the relative ordering of a1,a2 by
assumption (and hence disagrees with ω), we apply Lemma 127 to con-
clude that swapping the relative ordering of a1,a2 within ω (obtaining
a2|b2|b1|a1) results in a ranking, ω ′, such that h(ω ′) > 0. Finally, observe
that ω and ω ′ must now disagree on the relative ranking of a2,b2, and
invoking Lemma 127 again shows that we can swap the relative ordering of
a2,b2 within ω (obtaining a1|a2|b1|b2) to result in a ranking σ ′ such that
h(σ ′) > 0. This element σ ′ ranks b1 before b2, which is what we wanted to
show.

We have shown that there exist rankings which disagree on the relative
ordering of b1 and b2 with positive probability under h. Again applying
Lemma 127 shows that we can swap the relative ordering of items b1,b2
within σt to obtain σt+1 such that h(σt+1) > 0, which concludes the
proof.
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