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Traditional Alzheimer’s Staging 
(e.g., [Jack et al, 2010]) 

Event-based Alzheimer’s Staging 
[Fonteijn et al, 2011] 

Event 1 

Event 2 

Event 3 

Event 4 

Event 5 

Event 6 

Example Biomarker 
Events 

Brain volume atrophy 
Hippocampal atrophy 

Abnormal CSF tau level 
Abnormal CSF Aβ level 

Failure of cognitive 
assessment test 

… vs. 
More detailed, quantifiable events allow for  
much more detailed and quantifiable 
models of disease progression 

Traditional staging models often 
imprecisely/subjectively defined and 
too coarse. 

With many detailed events, the assumption of a single 
``universal’’ ordering is a major oversimplication of reality! 

Presymptomatic 

Mild/Moderate 

Severe Healthy vs. Severe AD 

Example snapshot vector 
(from the Alzheimer’s Disease Neuroimaging Institute, ADNI) 

Patient measurements 
Control group (mostly healthy) measurements 

CSF tau level CSF Aβ42 level 
ADAS score 

(cognitive test) 

Total brain volume Hippocampal volume Brain atrophy 
Acquire snapshot vector #1 

Acquire snapshot vector #3 

Ideally 

In practice 

Biomarkers 1 2 3 4 
Measurement Normal Abnormal Abnormal Normal 

Biomarkers 1 2 3 4 
Measurement 1.2 2.0 -1.3 0.4 

Acquire snapshot vector #2 

Events already occurred 

Events yet to occur 

Time of snapshot 
(relative to disease 
cascade) is unobserved! 

Snapshot: measurement vector of all biomarkers taken at a single time t 
Staging with snapshot data 

(Normal assumption not crucial) 

The ALPACA model 
(Alzheimer’s Probabilistic Cascades model) 

ALPACA explicitly models variability of event 
orderings amongst patients. 

At what point within his disease cascade 
was the most recent snapshot taken? 

In what order will events 
occur for a patient? 

Mallows model: 

Mode Spread/concentration 

“Bubblesort distance” 

P (�;�0, ✓) / exp (�✓ · dK(�,�0))

e.g., [Fligner ‘86] 

Mallows model over rankings 

Approach Size of output Computation 
Exact posterior 

Exact sampling 

Gibbs sampling 

Our Algorithm 
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Staging!

Model! Inference!

Conversion to 
partial ranking 

Example:! �(j) = 1|2|3|4
⌧ (j) = {2}

�(j)|⌧ (j) = 1, 2|3, 4

} 
�(j)  �(j)|⌧ (j)

⌧ (j) ⇠ P (⌧ |� = �(j�1), z(j))
�j ⇠ P (� | � = �(j�1),�0, ✓)

Observed measurements 

Repeat { 

Exact Inference for ALPACA is hard! 

Gibbs sampling for ALPACA 

P (�, ⌧ | {z(j)i,e }i=1,...,K,e=1,...,N )To compute: 
K = # snapshots N = # events 

Tractable Gibbs sampling 

Measurements for one particular patient 

Size:" O(N !)

Size:" O
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k
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Example Gibbs chain!
σ(1) = A | B | C | D!

γ(1) = A , B , C | D!

σ(2) = C | A | B | D!

γ(2) = C | A , B , D!

σ(3) = C | B | A | D!

(τ = {3})"

(τ = {1})"

Draw σ from Mallows 
model conditioned on the 
fact that σ is consistent 
with partial ranking γ 
O(N2) sampling possible 
[see Huang et al., 2012] 
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K 

N-K 

Staircase walks 

1.  Start at top-left; End 
at bottom-right  

2.  Always move right or 
down  

Thm: There exists a setting of the edge probabilities 
such that P(staircase walk) is the same as: "

P (⌧ |� = �(j�1), z(j))
for corresponding K-subset "⌧
Corollary: Snapshot set sampling can be 
performed in time O(N2)!

Sampling Event Orderings 

Sampling Snapshot Sets 
⌧ (j) ⇠ P (⌧ |� = �(j�1), z(j))

Distribution over K-subsets!

�j ⇠ P (� | � = �(j�1),�0, ✓)

γ(j-1) = C | A , B , D!Previous Gibbs iteration:!

Consistent ordering: 
Inconsistent ordering: 

σ(j) = C | B | A | D!
σ(j) = B | A | C | D!

Distribution over orderings!

Hard to decompose into 
independent sampling 
subproblems due to 
constraint |τ|=K.!

Results!

Extensions!

Less measurement noise, more data means more reliable recovery of central ranking !

Single ordering  ALPACA model 

ADAS 
(cognitive) score 

ADAS 
(cognitive) score 

Hippocampal 
volume 

Hippocampal 
volume 

Hippocampal 
atrophy 

CSF Aβ42 level 

Brain atrophy Hippocampal 
atrophy 

CSF Aβ42 level CSF tau level 

CSF tau level Brain atrophy 

Brain volume Brain volume 

N=7 events 
M=347 patients 

Synthetic data experiments 

ADNI dataset 

Larger snapshot sets  (more measurements per 
patient) more informative; "

But smaller snapshot sets mix/converge faster"

Thm: Our proposed Gibbs sampler is ergodic 
on its state space (i.e., guaranteed to the 
correct posterior) if and only if K<N-1.  

Generalized Snapshot Set Models 

Generalized Orderings Models 

Our inference algorithm handles a wide variety of extensions of 
ALPACA with no change  

Our model 
[Fonteijn,’11] 

N=20 events 
M=250 patients 

N=10 events 

•   CSF events shifted earlier by ALPACA (this is more 
consistent with current theory in Neuroscience)  

•   ADAS used to classify patients, so it (artificially) 
comes first in the ordering 

•   Surprisingly, the hippocampal events are early in 
both models (we believe due to misdiagnosis).  
Future work will adapt model to outliers. 

Biased Snapshot Set Models 
Multiply downward probabilities 
by factor α and rightward 
probabilities by (1-α).   
Then normalize. 

(2,3)! (2,2)! (2,1)! (2,0)!

(1,3)! (1,2)! (1,1)! (1,0)!

(0,3)! (0,2)! (0,1)! (0,0)!

(1-α)q!
αp!

α < 0.5! Prior belief that early detection happens more often 

α > 0.5! Prior belief that late detection happens more often 

Generalized 
Mallows Models 

Each event associated with a 
separate spread parameter 

Events 
CSF Aβ42 level .35 

Hippocampal 
atrophy .632 

CSF tau level .2 

“Vanilla”
Mallows 
Models 

Hierarchical Riffle 
Independent Models 
{1,2,3,4,5,6,7,8,9,10}!

{2}! {1,3,4,5,6,7,8,9,10}!

{1,3,5,6,7,8,9,10}!{4}!

{1,3,7,8,9,10}! {5,6}!

{3,7,8,9,10}! {1}!

{3,8,9}!{7,10}!
Model nontrivial correlations 

between multiple events 

N=20 events 
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Central ordering σ0 learned 
using (Monte Carlo) EM 


