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Best independence decomposition for APA dataset

KL(true,factored)=Inf, 
TV(true,factored)=7.2e-01
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Independence assumptions impose sparsity! 

Candidate {3} independent from Candidates {1,2,4,5} 

Graphical model for joint 
ranking of 6 candidates

Mutual exclusivity leads to 
fully connected model!
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{A,B,C}, {D,E,F} 
independent

{A,B,C} occupy positions 
{1,2,3}  with prob. 1

{D,E,F} occupy positions 
{4,5,6}  with prob. 1

Sparsity: any permutation putting A, B, or C in 
ranks 4, 5, or 6 has zero probability!
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Can verify condition using first-order marginals
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Riffle Independent Approximations
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KL(true,riffle)=3.98e-02, 
TV(true,riffle)=1.11e-01

KL(true,factored)=Inf, 
TV(true,factored)=7.2e-01

Candidate {2} riffle independent from Candidates {1,3,4,5} 

Full independence model:

Draw ranking of objects in set X from distribution f

Draw ranking of objects in set Y from distribution g

Form full ranking over both sets
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Riffled independence model:

As before, draw ranking from full independence model

(Extra Riffle Step) Interleave the two sets, while 
preserving the relative rankings within each set 
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Riffle Shuffles

Riffle shuffle (a.k.a. dovetail 
shuffle, Faro shuffle)

Cut deck into two piles.

Interleave piles.

Each riffle shuffle corresponds 
to a distributions over 

interleavings

Interleaving distribution

Special Cases

Drop cards from right hand first

Drop cards from left hand first

First order marginals

Riffled Independence with a delta interleaving distribution 
recovers ordinary independence
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Between extremes

Uniform interleaving distribution

Drop cards from right hand faster

Drop cards from left hand faster

Reflects complete indifference 
between fruits and vegetables

Sweeping out the continuum

Fruits always better
than veggies!

Veggies always better
than fruits!

~Veggies sometimes 
better than fruits~

Full Independence
Much smaller than n!, 
but can be very big!

Permutation of 
{1,…,p}

Permutation of 
{p+1,…,n}

Interleaving of {1,…,p} 
and {p+1,…,n}

Permutation of {1…n}

O(p!) O((n-p)!) O(n!/p!(n-p)!)

(# parameters)
Simple interleaving model

While there are cards left in each hand {

With probability α,

Drop bottommost card from left hand;

With probability 1-α,

Drop bottommost card from right hand;

}

Drop all remaining cards;

left hand right hand

dropped cards

Probability= α (1-α) α α

Sushi ranking

Dataset: 5000 preference rankings of 10 types 
of sushi

Types

1. Ebi (shrimp)

2. Anago (sea eel)

3. Maguro (tuna)

4. Ika (squid)

5. Uni (sea urchin)

6. Sake (salmon roe)

7. Tamago (egg) 

8. Toro (fatty tuna)

9. Tekka-make (tuna roll)

10. Kappa-maki (cucumber roll)
sushi
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Prob(sushi i was ranked j)

Fatty tuna (Toro)
is a favorite!

No one likes 
cucumber roll !
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Estimated from 100 
samples

Estimated from 1000 
samples

Biased riffle 
approximation
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Matching

Multiobject Tracking

Cards

Ranking/Voting

American Psychological Association Elections

Each ballot is a ranked list of candidates

5738 ballots  (1980 election)

5 candidates

(1) William Bevan 

(2) Ira Iscoe

(3) Charles Kiesler

(4) Max Siegle

(5) Logan Wright
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First-order Matrix

Prob(candidate i was ranked j)

Candidate 3 is 
polarizing

There are n! permutations of n objects:

n n! Memory required to store n! doubles

9 362,880 3 megabytes

12 4.8x108 9.5 terabyes

15 1.31x1012 1729 petabytes (!!)

Possible biases:

Sparsity? 

Fourier sparsity? 

Independence/Graphical models? 

Our paper: Riffled Independence – a more natural 
notion of independence for ranked data

(Not to mention sample 
complexity issues…)

American Psych. Assoc. Election (1980)
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KL(true,riffle)=3.98e-02, 
TV(true,riffle)=1.11e-01

KL(true,factored)=Inf, 
TV(true,factored)=7.2e-01
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KL(true,riffle)=8.41e-02, 
TV(true,riffle)=1.72e-01

Candidate 3 fully independent vs. Candidate 2 riffle independent

Candidate 3 riffle independent
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KL(true,best hierarchy)=6.76e-02, 
TV(true,best hierarchy)=1.44e-01

KL(true,other hierarchy)=1.08e-01, 
TV(true,other hierarchy)=1.91e-01

Best KL hierarchy
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OrangesApples >

Cherry>Broccoli

Strawberry>Spinach

Easy to condition

Harder to condition

Easy to condition on any 
observations involving only 

fruits (or only veggies)

Easy to condition on observations 
involving relative rankings of only 

fruits (or only veggies)

Easy to condition

Harder to condition

Strawberry is 2rd and Spinach is 1st

Broccoli is 3rd and Cherry is 1st

Apples is 1st and Oranges is 2st

Fruits, Veggies fully 
independent

Fruits, Veggies riffle 
independent

Easy conditioning: only update a single factor in Bayes rule

Hard conditioning: need to update full joint distribution

First order 
restriction

Efficient pairwise
comparisons?

# Parameters

Full 
Independence

Riffled 
Independence

Conditional 
Independence

Can we exploit riffled independence in 
bandlimited Fourier settings?

Approximate distributions over permutations with low 
frequency basis functions [Kondor2007, Huang2007]

+.2 x +.5 x +.3 x.6 xf(x)=

Fourier coefficients Fourier basis functions

low frequency high frequency

Fourier analysis on 
the real line

Collection of (scalar) frequency 
responses

Fourier analysis on Sn

(Permutations of n objects)

Fourier coefficients on permutations are a collection of 
square matrices ordered by “complexity”:

Bandlimiting

keep a truncated set of coefficients

Fourier domain inference operations

convolution, normalization, conditioning, join/split (with 
respect to full independence)

[Kondor et al,AISTATS07]

[Huang et al,NIPS07, AISTATS09]

low complexity high complexity

(RiffleJoin problem) Find Fourier coefficients of the 
joint h given Fourier coefficients of factors f, g, and m?

(RiffleSplit problem) Find Fourier coefficients of 
factors f and g given Fourier coefficients of the joint h?

Distribution over 
interleavings

(permutations that 
preserve relative ranks)

Proposition: Objects {1…p} and {p+1,…n} are riffle-
independent under joint distribution h iff h factors as:

Fully independent 
distribution

Convolution

Solution: can write both algorithms using 
convolutions, joins and splits!

Fourier domain RiffleJoin, RiffleSplit

RiffleJoin

Join the relative ranking factors f, g

Convolve the fully factored joint by the riffle shuffling 
distribution m to obtain the riffle independent joint 
distribution h

RiffleSplit

Convolve joint distribution h by “dual shuffle”, m*

Split result to obtain relative ranking factors f, g

Normalize f,g

Theorem: Given up to the kth-order terms 
of relative ranking factors, f and g, 
RiffleJoin reconstructs up to the kth-order 
terms of the joint distribution, h

Theorem: Given the Fourier coefficients of 
the joint distribution h, the output of 
RiffleSplit is the minimizer of the problem:

joint Riffle independent 
approximation

Irish House of Parliament election 2002

Data from Meath constituency (42 total in Ireland) 

64,081 votes, 14 candidates

Two main parties: 

Fianna Fail (FF)

Fine Gael (FG)

Minor parties:

Independents (I)

Green Party (GP)

Christian Solidarity (CS)

Labour (L)

Sinn Fein (SF)
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approximation

Riffle Independent 
(candidates sorted)

“True” first order 
marginals
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is a natural notion of independence for rankings

can be exploited for efficient inference, low 
sample complexity

can be integrated seamlessly into Fourier 
theoretic inference frameworks

approximately holds in certain real datasets
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Fourier Theoretic Algorithms

Decomposing Ranked Data Other Notions of 

Independence

Riffled Independence

Full Independence on Rankings

Introduction

Take Home


