

gite The Fourier view - Our minimal se fof coefficients can be interpereted asa Genern pitive provided by youvt theor:

Gex Group representations

 $\rho\left(\sigma_{1} \sigma_{2}\right)=\rho\left(\sigma_{1}\right) \cdot \rho\left(\sigma_{2}\right.$

ene The Fourier Transform - Each matix entry of reperesentation is is stown basis
 $\left.\hat{f}_{n}=\sum_{\sigma \in G} f(\sigma)\right)_{(\sigma)}$

为

Example:

Ciditit Two sources of overcompleteness
 $\left.\begin{array}{ll} \\ \text { eppresenation: } \\ p_{1} \not \theta_{2} & r_{2}=\left[\begin{array}{ll}\rho_{1} & 0\end{array}\right]\end{array}\right]$

feex Dealing with overcompleteness

sidice Hidden Markov model inference

Problem Statenent: For each timeste, return posterior

Prediction/Rollup
Predidion/Rolup can be e witien asa convolution:
fiei Fourier Domain Prediction/Rollup - Convolutions are pointwise products in the Fourier Conem upate individual frevuencry comononents

$\hat{P}_{p}^{(t+1)} \leftarrow \hat{Q}_{p}^{(t)} \cdot \hat{P}^{(t)}$
Furier doman Preidition/pollup is exact on the
geitice Conditioning Bayes rul is a pointwis product of the likelihoo
 xample Ikellood functione

Kronecker Conditioning
 $\underbrace{2}$

Kitice Kronecker Conditioning

geite Bandlimiting and error analysis

Dealing with negative numbers

Simulated data drawn from HMM

Simulated data drawn from HMM

Conclusions
\qquad

