

3214

2143

1/5

0

Matrix of high-order marginals Block-diagonal sum of coefficients Instead of storing marginals, only store this minimal set of coefficients (from which marginals can be reconstructed)

Efficient Inference for Distributions on Permutations Carlos Guestrin Jonathan Huang Leonidas Guibas Carnegie Mellon University Stanford University

The Fourier view

- Our minimal set of coefficients can be interpreted as a generalized Fourier basis!! [Diaconis, `88]
- General picture provided by group theory:
- The space of functions on a group can be decomposed into Fourier components with the familiar properties: Orthogonality, Plancherel's theorem, Convolution theorem, ...
- For permutations, simple marginals are "low-frequency": • 1st order marginals are "lowest-frequency" basis functions
- 2nd order (unordered) marginals are 2nd lowestfrequency basis functions

Group representations

- The analog of sinusoidal basis functions for groups are called group representations
- A group representation, ρ of a group G is a map from G to the set of d₀x d₀ matrices such that for all σ₁,σ₂∈ G:
 - $\rho(\sigma_1 \sigma_2) = \rho(\sigma_1) \cdot \rho(\sigma_2)$

This is like:
$$e^{i\theta_1} \cdot e^{i\theta_2} = e^{i(\theta_1 + \theta_2)}$$

- Example: The trivial representation is defined by: $\tau_0(\sigma) = 1, \quad \forall \sigma \in G$
- The trivial representation is the constant basis function and captures the normalization constant of a distribution in the generalized Fourier theory

The Fourier Transform

- Each matrix entry of a representation is its own basis
- function! Define the Fourier Transform of a function f, at the **representation** ρ to be the **projection** of f onto the basis given by ρ :

$$f_{\sigma} = \sum_{\sigma \in G} f(\sigma) \rho(\sigma)$$

- Note that: Generalized Fourier transforms are matrix-valued! • And are **functions of representation** (instead of frequency)
- For most ρ , we end up with an overcomplete basis But... there are only two ways in which linear dependencies can appear in group representations

Example: 1st order representation

- Example: $\tau_1([123]) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \tau_1([213]) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \tau_1([132]) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 0 0 1 $0 \ 0 \ 1$ 0 1 0 $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ $\tau_1([231]) = \begin{vmatrix} 1 & 0 & 0 \end{vmatrix} \quad \tau_1([312]) = \begin{vmatrix} 0 & 0 & 1 \end{vmatrix}$ $\tau_1([321]) = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ 1 0 0 $1 \ 0 \ 0$ 0 1 0
- The Fourier transform of a distribution P, at the 1st order permutation representation is exactly the 1st order matrix of marginal probabilities of P!

Two sources of overcompleteness
1. Can combine two representations ρ_1 , ρ_2 to get a new representation $\rho_1 \oplus \rho_2$ (called the direct sum representation): $\rho_1 \oplus \rho_2 = \left[\frac{\rho_1 \ 0}{0 \ \rho_2}\right]$
Example: (direct sum of two trivial representations) $ au_0 \oplus au_0(\sigma) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \forall \sigma \in G$
2. Given a representation ρ_1 , can "change the basis" to get a new representation by conjugating with an invertible matrix, C: $\rho_2(\sigma) = C^{-1} \cdot \rho_1(\sigma) \cdot C$

 ρ_1 and ρ_2 are called equivalent representations

• $P(z=green \mid \sigma(Alice)=Track \mathbf{1}) = 9/10$ ("If Alice is at Track 1, then we see green at Track 1 with probability **9/10**")

Carnegie Mellon

Minimization can be written as an efficient Quadratic

program!

• Minimize the distance to the Marginal Polytope in the Fourier domain by using the Plancherel theorem: $\sum (f(\sigma) - g(\sigma))^2 = \frac{1}{|G|} \sum d_{\rho_k} \operatorname{Tr} \left(\left(\hat{f}_{\rho_k} - \hat{g}_{\rho_k} \right)^T \cdot \left(\hat{f}_{\rho_k} - \hat{g}_{\rho_k} \right) \right)$

projecting to the marginal polytope

and simulated data

Evaluated approach on real camera network application