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(Can you tell where A,B, and D are?)

indicates identity confusion between tracks

How many permutations?
There are n! permutations!

Graphical models not appropriate due to mutual 
exclusivity constraints which lead to a fully connected 
graph

If A is in Track 1, then B cannot be in Track 1

Memory required to store n! doublesn!n

4.5x1012 petabytes6.2x102324

1729 petabytes1.31x101215

9.5 terabytes4.8x10812

3 megabytes362,8809

∼ Avogadro’s Number

Objectives
Permutations appear in many real world 
problems!

Identity Management / Data Association
Card Shuffling Analysis
Rankings and Voting Analysis

We will:
Find a principled, compact representation for 
distributions over permutations with tuneable
approximation quality
Reformulate Hidden Markov Model inference
operations with respect to our new representation:

Marginalization
Conditioning

1st order summaries
An idea: store marginal probabilities that identity j
maps to track i

A B C D

Tr
ac

k 
pe

rm
u

ta
ti

on
s

Identities

1 2 3 4
2 1 3 4
1 3 2 4
3 1 2 4
2 3 1 4
3 2 1 4
1 2 4 3
2 1 4 3

0
0

1/10
0

1/20
1/5

0
0

“David is at Track 4
with probability: 
=1/10+1/20+1/5
=7/20              ”

P(σ)

1st order summaries
We can summarize a distribution using a 
matrix of 1st order marginals
Requires storing only n2 numbers!
Example:

3/10 0 1/2 1/5

1/5 1/2 3/10 0

3/10 1/5 1/20 9/20

1/5 3/10 3/20 7/20
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“Cathy is at Track 3 with 
probability 1/20”

“Bob is at Track 2 with 
zero probability”

The problem with 1st order
What 1st order summaries can capture:

P(Alice is at Track 1) = 3/5 
P(Bob is at Track 2) = 1/2 

Now suppose:
Tracks 1 and 2 are close, and Alice and Bob are not 
next to each other…
Then P({Alice,Bob} occupy Tracks {1,2}) = 0

Moral: 1st order summaries cannot capture higher order 
dependencies!

Unordered Pairs

2nd order summaries
Idea #2: store marginal probabilities that identities 
{k,l} map to tracks {i,j}
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1 2 4 3
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“Alice and Bob occupy 
Tracks 1 and 2 with 
zero probability”

P(σ)

Requires storing O(n4)
numbers – one for each 
pair of unordered pairs, 
({i,j},{k,l})

Et cetera…
And so forth… We can define:

3rd-order marginals
4th-order marginals
…
nth-order marginals (which recovers the original 

distribution but requires n! numbers)

Fundamental Trade-off: we can capture 
higher-order dependencies at the cost of storing 
more numbers

Discarding redundancies
Matrices of marginal probabilities carry redundant information

Example on 4 identities: the probability that {Alice,Bob} 
occupy Tracks {1,2} must be the same as the probability 
that {Cathy,David} occupy Tracks {3,4}

Can efficiently find a matrix C to “remove redundancies“:

Instead of storing marginals, only store this minimal set of 
coefficients (from which marginals can be reconstructed)

CT C =

Matrix of high-order marginals Block-diagonal sum of coefficients

1st order information

2nd order information

3rd order information

The Fourier view
Our minimal set of coefficients can be interpreted as a 
generalized Fourier basis!! [Diaconis, ‘88]
General picture provided by group theory:

The space of functions on a group can be decomposed 
into Fourier components with the familiar properties: 
Orthogonality, Plancherel’s theorem, Convolution 
theorem, …

For permutations, simple marginals are “low-frequency”:
1st order marginals are “lowest-frequency” basis 
functions
2nd order (unordered) marginals are 2nd lowest-
frequency basis functions
…

Example: 1st order representation
Define the 1st order permutation representation by:

Example:

The Fourier transform of a distribution P, at the 1st order 
permutation representation is exactly the 1st order matrix 
of marginal probabilities of P!

Hidden Markov model inference

Prediction/Rollup:

Conditioning:

σ1 σ2 σ3 σ4

z1 z2 z3 z4

Latent Permutations

Identity Observations

Problem Statement: For each timestep, return posterior 
marginal probabilities conditioned on all past observations
To do inference using Fourier coefficients, we need to cast 
all inference operations in the Fourier domain

Prediction/Rollup
Assume σt+1 is generated by the (random walk) rule:

Draw τ∼ Q(τ)
Set σt+1 = τ⋅σt

For example, Q([2 1 3 4])=½ means that Tracks 1 and 
2 swapped identities with probability ½.

Prediction/Rollup can be written as a convolution:

Mixing Model

Convolution (Q*Pt)!

Fourier Domain Prediction/Rollup
Convolutions are pointwise products in the Fourier 
domain!

Can update individual frequency components 
independently:
Update rule: for each irreducible ½:

Fourier domain Prediction/Rollup is exact on the 
maintained Fourier components!

matrix multiplication

Conditioning
Suppose we know 1st order marginals of the prior
distribution:

P(Alice is at Track 1 or Track 2)=.9
P(Bob is at Track 1 or Track 2)=.9

Then we make a 1st order observation: 
“Cathy is at Track 1 or Track 2 with probability 1”

(This means that Alice and Bob cannot both be at Tracks 
1 and 2!)

P({Alice,Bob} occupy Tracks {1,2})=0

Moral: Conditioning increases the representation 
complexity!

Kronecker Conditioning
Conditioning is convolution in the Fourier domain 
[Willsky, ‘78]

(except with Kronecker products)
Low-order information is “smeared” to high-order levels

P(σt) L(σt)

=

= 2.) Reproject to Orthogonal 
Fourier Basis

Posterior, P(σt|z)

1.) Convolve coefficients

Kronecker Conditioning
More formally,  Let     and       be the Fourier transforms of the likelihood 
function and prior distribution:

For each ordered pair of irreducibles, define the matrix:

Then the Fourier transform of the posterior is:

where       is the block of       corresponding to the          block in:

(Clebsch-Gordan decomposition)

CT C =

Bandlimiting and error analysis
For tractability, discard “high-frequency” coefficients

Equivalently, maintain low-order marginals
Fourier domain Prediction/Rollup is exact
Kronecker Conditioning introduces error
But if we have enough coefficients, then Kronecker
conditioning is exact at a subset of low-frequency terms!

Theorem. If the Kronecker Conditioning Algorithm is 
called using pth order terms of the prior and qth order 
terms of the likelihood, then the (|p-q|)th order 
marginals of the posterior can be reconstructed 
without error.

Dealing with negative numbers
Consecutive Conditioning steps propagates errors to all 
frequency levels
Errors can cause our marginal probabilities to be 
negative!
Solution: Project to the Marginal Polytope (Fourier 
coefficients corresponding to nonnegative marginal 
probabilities) 

Minimize the distance to the Marginal Polytope in the 
Fourier domain by using the Plancherel theorem:

Minimization can be written as an efficient Quadratic 
program!

Algorithm summary
Initialize prior Fourier coefficient matrices
For each timestep t = 1,2,…,T

Prediction/Rollup:
For all coefficient matrices

Conditioning
For all pairs of coefficient matrices 

Compute and reproject to the orthogonal 
Fourier basis using the Clebsch-Gordan decomposition

Drop high frequency coefficients of
Project to the Marginal polytope using a Quadratic 
program

Return marginal probabilities for all timesteps

Simulated data drawn from HMM

Accuracy of Kronecker
Conditioning after 

several mixings (n=8)
Running Time for 

processing 10 timesteps

Measured at 1st order 
marginals

2nd order (ordered)
2nd order (unordered)
1st order

Exact inference

(Keeping all 2nd order marginals 
is enough to ensure zero error 

for 1st order marginals)
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Simulated data drawn from HMM

Fraction of observation events
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Projection to the Marginal polytope
versus no projection (n=6) With Projection

Without Projection

1st order

2nd order (ordered)

2nd order (unordered)

Approximation by a 
uniform distribution

1st order

2nd order (ordered)

2nd order (unordered)

No mixing eventsNo observations
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Conclusions
Presented an intuitive, principled representation for 
distributions on permutations with

Fourier-analytic interpretations, and
Tuneable approximation quality

Formulated general and efficient inference operations
directly in the Fourier Domain
Analyzed sources of error which can be introduced by 
bandlimiting and showed how to combat them by 
projecting to the marginal polytope
Evaluated approach on real camera network application
and simulated data

Reasoning with Permutations
We model uncertainty in identity management 
with distributions over permutations
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Probability of each 
track permutation

1 2 3 4
2 1 3 4
1 3 2 4
3 1 2 4
2 3 1 4
3 2 1 4
1 2 4 3
2 1 4 3

0
0

1/10
0

1/20
1/5

0
0

“Alice is at Track 1, 
and Bob is at Track 3, 
and Cathy is at Track 2,
and David is at Track 4
with probability 1/10”

P(σ)

Tracking with a camera network
Camera Network data:

8 cameras, multiple viewpoints, 
occlusion effects
11 individuals in lab environment
Identity observations obtained from 
color histograms
Mixing events declared when people 
walk close to each other

Two sources of overcompleteness
1. Can combine two representations to get a new 

representation  (called the direct sum 
representation):

Example: (direct sum of two trivial representations)

2. Given a representation     , can “change the basis” to 
get a new representation by conjugating with an 
invertible matrix, C:

and      are called equivalent representations

Conditioning
Bayes rule is a pointwise product of the likelihood 
function and prior distribution:

Example likelihood function: 
P(z=green | (Alice)=Track 1) = 9/10
(“If Alice is at Track 1, then we see green at Track 1
with probability 9/10”)

PriorPosterior Likelihood

Track 1

Group representations
The analog of sinusoidal basis functions for groups 
are called group representations
A group representation, ρ of a group G is a map from G 
to the set of dρx dρ matrices such that for all σ1,σ2∈ G:

Example: The trivial representation ¿0 is defined by:

The trivial representation is the constant basis 
function and captures the normalization constant of 
a distribution in the generalized Fourier theory 

This is like:

The Fourier Transform
Each matrix entry of a representation is its own basis 
function!
Define the Fourier Transform of a function f, at the 
representation  to be the projection of f onto the 
basis given by ρ: 

Note that:
Generalized Fourier transforms are matrix-valued!
And are functions of representation (instead of frequency)!

For most    , we end up with an overcomplete basis
But… there are only two ways in which linear dependencies can 
appear in group representations

Dealing with overcompleteness
There is a set of “atomic” representations which are not 
equivalent to any direct sum of smaller representations – called 
irreducible representations.

Maschke’s Theorem: Every representation is equivalent to a 
direct sum of irreducibles! 

e.g. for any representation 

Connection to Fourier analysis:
Peter-Weyl Theorem: Irreducibles form a complete 
orthogonal basis for the space of functions on a group
We only store Fourier coefficients at irreducibles

irreducibles

multiplicity


