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Abstract

Permutations are ubiquitous in many real world problemshsas voting,
rankings and data association. Representing uncertairdy mermutations is
challenging, since there aré possibilities, and typical compact representations
such as graphical models cannot efficiently capture the ah@xclusivity con-
straints associated with permutations. In this paper, veetius “low-frequency”
terms of a Fourier decomposition to represent such digioibsi compactly. We
presentronecker conditioninga general and efficient approach for maintaining
these distributions directly in the Fourier domain. Low @rd-ourier-based
approximations can lead to functions that do not correspondlid distributions.
To address this problem, we present an efficient quadratgram defined
directly in the Fourier domain to project the approximatmrto a relaxed form
of the marginal polytope. We demonstrate the effectivenéssir approach on a
real camera-based multi-people tracking setting.

1 Introduction

Permutations arise naturally in a variety of real situaicuch as card games, data association
problems, ranking analysis, etc. As an example, considensos network that tracks the positions
of n people, but can only gather identity information when thetkanear certain sensors. Such
mixed-modality sensor networks are an attractive altera&b exclusively using sensors which can
measure identity because they are potentially cheapeerdageploy, and less intrusive. See [1]
for a real deployment. A typical tracking system maintainasks ofn people and the identity of
the person corresponding to each track. What makes the pnalifécult is that identities can be
confused when tracks cross in what we call mixing events.nkdaiing accurate track-to-identity
assignments in the face of these ambiguities based on fyengasurements is known as the
Identity Management Probleff], and is known to béV P-hard. Permutations pose a challenge for
probabilistic inference, because distributions on theugrof permutations om elements require
storing at least:! — 1 numbers, which quickly becomes infeasibleragcreases. Furthermore,
typical compact representations, such as graphical modafot capture the mutual exclusivity
constraints associated with permutations.

Diaconis [3] proposes maintaining a small subset of Fowaefficients of the actual distribution al-
lowing for a principled tradeoff between accuracy and caxiy. Schumitsch et al. [4] use similar
ideas to maintain a particular subset of Fourier coeffisi@fithe log probability distribution. Kon-
dor et al. [5] allow for general sets of coefficients, but assia restrictive form of the observation
model in order to exploit an efficient FFT factorization. Thain contributions of this paper are:

e A new, simple and general algorithidronecker Conditioningwhich performs all proba-
bilistic inference operations completely in the Fouriem@dan. Our approach is general, in
the sense that it can address any transition model or li@difunction that can be repre-
sented in the Fourier domain, such as those used in previotls and can represent the
probability distribution with any desired set of Fourieefficients.

¢ \We show that approximate conditioning can sometimes yieldiEr coefficients which do
not correspond to any valid distribution, and present a otketar projecting the result back
onto a relaxation of the marginal polytope.

e We demonstrate the effectiveness of our approach on a reareabased multi-people
tracking setting.



2 Filtering over permutations

In identity management, a permutatiomepresents a joint assignment of identities to internakisa
with o (¢) being the track belonging to thith identity. When people walk too closely together, their
identities can be confused, leading to uncertainty evelfio model this uncertainty, we uséddden

Markov Modelon permutations, which is a joint distribution ovBto("), ... o) 21 2(T)
which factors as:
P, o™ W ) = P ) [ P eW) - P(eP]e D),
t

where thes(Y) are latent permutations and th&€) denote observed variables. The conditional
probability distributionP(c(¥)|o(*=1)) is called thetransition modeland might reflect for example,
that the identities belonging to two tracks were swappeth witme probability. The distribution
P(z®|o®) is called theobservation modelwhich might capture a distribution over the color of
clothing for each individual.

We focus orfiltering, in which one queries the HMM for the posterior at some timpstonditioned
on all past observations. Given the distributi®io®|z(1) ... 2(*)), we recursively compute
P(e®Dz(M . 2(+D) in two steps: aprediction/rollup step and aconditioningstep. The
first updates the distribution by multiplying by the trarwit model and marginalizing out the
previous timestep: P(ct+D (W 1 20y = S P(eHD|e)P(c® M) 1),
The second conditions the distribution on an observatighit!) using Bayes rule:
P01z 20D o P(20HD|gtHD) potD (0 (1) Since there aren!
permutations, a single update requit@§(n!)?) flops and is consequently intractable for all but
very smalln. The approach that we advocate is to maintain a compact @ppation to the true
distribution based on the Fourier transform. As we discasar,| the Fourier based approximation
is equivalent to maintaining a set of low-order marginasher than the full joint, which we regard
as being analagous to &ssumed Density Filtd6].

3 Fourier projections of functions on the Symmetric Group

Over the last 50 years, the Fourier Transform has been ubiely applied to everything digital,
particularly with the invention of the Fast Fourier Trarnsiho On the real line, the Fourier Transform
is a well-studied method for decomposing a function into m @f sine and cosine terms over
a spectrum of frequencies. Perhaps less familiar, is itagtbeoretic generalization, which we
review in this section with an eye towards approximatingfions on the group of permutations, the
Symmetric GroupFor permutations on objects, the Symmetric Group will be abbreviated%)y
The formal definition of the Fourier Transform relies on thedry of group representations, which
we briefly discuss first. Our goal in this section is to motivite idea that the Fourier transform of
a distributionP is related to certain marginals &f. For references on this subject, see [3].

Definition 1. A representatiorof a groupG is a mapp from G to a set of invertibled, x d,
matrix operators which preserves algebraic structure & gbnse that for alby,00, € G,
p(o102) = plo1) - p(o2). The matrices which lie in the image of this map are called the
representation matricesind we will refer tad, as thedegreeof the representation.

Representations play the role of basis functions, similahat of sinusoids, in Fourier theory. The
simplest basis functions are constant functions — and aiiefilample of a representation is the-

ial representatiop, : G — R which maps every element 6f to 1. As a more pertinent example,
we define thé st order permutation representatiof.S,, to be the degree representationy; , which
maps a permutation to its corresponding permutation matrix given fy;(o)};; = 1 {o(j) = i}.
For example, the permutation i3 which swaps the second and third elements maps to:

1 0 0
1(l—1,2—~33—2)=| 0 0 1 ].

0 1 0

The; representation can be thought of as a collection*dfunctions at once, one for each matrix
entry, [T (0)];;. There are other possible permutation representationsexample the2nd order
unordered permutation representation, is defined by the action of a permutation on unordered
pairs of objects, [p(c)] i 1,1,y = L{o({{, k}) = {i,j}}), andis a degreé(’;;” representation.
And the list goes on to include many more complicated repitasiens.



It is useful to think of two representations as being the siithe representation matrices are equal
up to some consistent change of basis. This idea is fornthbgedeclaring two representatiops
andr to beequivalentf there exists an invertible matri' such thaC~! - p(c) - C = (o) for all

o € G. We write thisap = 7.

Most representations can be seen as having been built up &llesmepresentations. We say that
a representatiop is reducibleif there exist smaller representatiops, p2 such thatp = p; @ po
where® is defined to be thdirect sum representation

p1 & pa(g) = ( plég) } p;gg) ) (1)
In general, there are infinitely many inequivalent représtgons. However, for any finite group,
there is always a finite collection of atomic representaiamich can be used to build up any
other representation using direct sums. These repregegaire referred to as theeducibles
of a group, and they are simply the collection of represertatwhich are not reducible. We will
refer to the set of irreducibles y. It can be shown that any representation of a finite grGup
is equivalent to a direct sum of irreducibles [3], and helficeany representation, there exists a
matricesC for whichC—! . 7. C = ®p.er @ pi, Where the inne refers to some finite number
of copies of the irreducibleg;.

Describing the irreducibles of,, up to equivalence is a subject unto itself; We will simply say
that there is a natural way to order the irreduciblesSgfthat corresponds to ‘simplicity’ in the
same way that low frequency sinusoids are simpler than higbguency ones. We will refer to the
irreducibles in this order ag, p1, . ... For example, the first two irreducibles form the first order
permutation representatiorn; (= po € p1), and the second order permutation representation can be
formed by the first 3 irreducibles.

Irreducible representation matrices are not always oghalj but they can always be chosen to be
so (up to equivalence). For notational convenience, tleglircible representations in this paper will
always be assumed to be orthogonal.

3.1 The Fourier transform

On the real line, the Fourier Transform corresponds to caimguinner products of a function with
sines and cosines at varying frequencies. The analogoustidefifor finite groups replaces the
sinusoids by group representations.

Definition 2. Let f : G — R be any function on a grou@' and Ietp be any representation d@r.
The Fourier Transformof f at the representatignis defined to befp Yoo flo)plo).

There are two important points which distinguish this Feufiransform from the familiar version

on the real line — it is matrix-valued, and instead of real bens, the inputs t¢ arerepresentations
of G. The collection of Fourier Transforms gfat all irreducibles form the Fourier Transform pf
As in the familiar case, there is an inverse transform giwen b

1 -
fm:@§mwmwwm @)

wherek indexes over the collection of irreducibles@f

We provide two examples for intuition. For functions on tlealrline, the Fourier Transform at
zero gives the DC component of a signal. This is also trueuoctions on a group; If : G — R
is any function, then the Fourier Transform @fat the trivial representation is constant with

foo = 2 o f(0). Thus, for any probability distributio®, we haveP,, = 1. If P were the uniform
distribution, thenﬁp = 0 at all irreducibles except at the trivial representation.

The Fourier Transform at; also has a simple interpretation:

Frlis = > f@m@)i; = Y f(@)l{cG)=it= > f(o)

oESh oESH o:0(j)=i

Thus, if P is a distribution, therjf’T1 is a matrix of marginal probabilties, where thith element
is the marginal probability that a random permutation drésom P maps element to . Similarly,
the Fourier transform oP at the second order permutation representation is a métrnaaginal
probabilities of the formP (o ({4, j}) = {k, ¢}).



In Section 5, we will discuss function approximation by biémding the Fourier coefficients, but
this example should illustrate the fact that maintainingrier coefficients at low-order irreducibles
is the same as maintaining low-order marginal probalsljitieshile higher order irreducibles
correspond to more complicated marginals.

4 Inference in the Fourier domain

Bandlimiting allows for compactly storing a distributiower permutations, but the idea is rather
moot if it becomes necessary to transform back to the prinoahain each time an inference
operation is called. Naively, the Fourier Transform$nscales a®)((n!)?), and even the fastest
Fast Fourier Transforms for functions 6f) are no faster tha®(n!log(n!)) (see [7] for example).
To resolve this issue, we present a formulation of inferamh&h operates solely in the Fourier
domain, allowing us to avoid a costly transform. We begin scassing exact inference in the
Fourier domain, which is no more tractable than the origprablem because there aséFourier
coefficients, but it will allow us to discuss the bandlimgiapproximation in the next section. There
are two operations to considegurediction/rollug andconditioning The assumption for the rest of
this section is that the Fourier Transforms of the transidod observation models are known. We
discuss methods for obtaining the models in Section 7.

4.1 Fourier prediction/rollup

We will consider one particular type of transition model —atttof a random walk over a group.
This model assumes that‘t!) is generated fronv(Y) by drawing a random permutatior*)
from some distributiorQ*) and settingr**1) = (") In our identity management example,
7(t) represents a random identity permutation that might ocowray tracks when they get close
to each other (anixing event but the random walk model appears in other applicatiot sis

modeling card shuffles [3]. The Fourier domain Predictiatiiip step is easily formulated using
the convolution theorem (see also [3]):

Proposition 3. Let@ and P be probability distributions o1%,,. Define the convolution @) and P to
be the functiodl@ « P] (o1) = 3_,. Q(o1-05 ") P(c2). Then for any representation {ﬁ’} =
p

@p . ﬁp, where the operation on the right side is matrix multiplioat

The Prediction/Rollup step for the random walk transitioodal can be written as a convolution:
Pty = 3 QY (r®)-P(e®) =3 QW (6*V.(6) ) P(sV) = [Qm « P} (o)),

{(c® 7)) o (t+D) =7 () .5(1) } o ()
Then assuming thdAt’p(t) and@ﬁf) are given, the prediction/rollup update rule is simply:
D(t+1 At . Dt
PHD QM- P,

Note that the update requires only knowledge’adnd does not requirB. Furthermore, the update
is pointwisein the Fourier domain in the sense that the coefficients atapeesentation affect

?p(t“) onlyatp.

4.2 Fourier conditioning

An application of Bayes rule to find a posterior distributiBr|z) after observing some evidence
requires gointwise productf likelihood L(z|o) and priorP (o), followed by a normalization step.
We showed earlier that the normalization consfait L(z|o) - P(o) is given by the Fourier trans-

form of L(®) P(*) at the trivial representation — and therefore the normtbmestep of conditioning

can be implemented by simply dividing each Fourier coeffickey the scalal[L“)P(t)]
PO

The pointwise product of two functiong and g, however, is trickier to formulate in the Fourier

domain. For functions on the real line, the pointwise pradufcfunctions can be implemented

by convolving the Fourier coefficients ¢f and §, and so a natural question is: can we apply a

similar operation for functions over other groups? Our arsw this is that there is an analogous

(but more complicated) notion of convolution in the Foudemain of a general finite group. We

present a convolution-based conditioning algorithm whighcall Kronecker Conditioningwhich,

in contrast to the pointwise nature of the Fourier Domairdjmt@n/rollup step, and much like

convolution, smears the information at an irreducitgldo other irreducibles.

4



Fourier transforming the pointwise product Our approach to Fourier Transforming the point-

wise product in terms of andg is to manipulate the functiofi(c)g(o) so that it can be seen as the
result of an inverse Fourier Transform. Hence, the goallwélto find matricesi;, (as a function of

f,9) such that for any € G,
10)9(0) = g Lo Tr (41 1), ®

whereA;, = {E} . For anyo € G we can write the pointwise product in ternisindg using the
P
inverse Fourier Traknsform (Equation 2):

o S0 (o) [y S 7 i)

- (&) S o) @)

Now we want to manipulate this product of traces in the last lio be just one trace (as in
Equation 3), by appealing to some properties of itietrix Kronecker product The connection
to the pointwise product (first observed in [8]), lies in themerty that for any matrice¥, V,
Tr (U V)= (TrU) - (TrV). Applying this to Equation 4, we have:

Tr (pr ~Pi(0')) Tr (QZJ -pj(cr)) = Tr ((pr .pq-,(a)) ® (g; .pj(g)))
= Tr ((fm ® ﬁpj)T ~(pi(o) ® pj(o'))) , (5)

flo)-g(o) =

where the last line follows by standard matrix propertiee Term on the rightp; (o) @ p; (o),
itself happens to be a representation, called Khenecker Product Representatiorin general,
the Kronecker Product representation is reducible, and sani decomposed into a direct sum of
irreducibles. This means that #f andp; are any two irreducibles o, there exists a similarity
transformC;; such that for any € G,
Zijk
Ci' - lpi @ psl (o) - Ciy = P EP pr(0).

k (=1
The & symbols here refer to a matrix direct sum as in Equatioh ihdexes over all irreducible
representations of,,, while ¢ indexes over a number afopiesof p, which appear in the de-
composition. We index blocks on the right side of this equathy pairs of indicegk, ). The
number of copies of eachy, is denoted by the integer;;;, the collection of which, taken over
all triples (i, j, k), are commonly referred to as ti@ebsch-Gordarseries. Note that we allow
the z;;;, to be zero, in which casg, does not contribute to the direct sum. The matriCgsare
known as theClebsch-Gordan coefficientsThe Kronecker Product Decompositiogoroblem is
that of finding the irreducible components of the Kroneckerdpcct representation, and thus to
find the Clebsch-Gordan series/coefficients for each paiemfesentationép;, p;). Decomposing
the Kronecker product inside Equation 5 using the Clebscoldén series/coefficients yields the
desired Fourier Transform, which we summarize here:

Proposition 4. Let f , g be the Fourier Transforms of functiorfsand g respectively, and for each
ordered pair of irreduciblegp;, p;), define the matrix:4;; = Oi;l . (fp ® g,,j) - Cyj. Then the
Fourier tranform of the pointwise produgy is:

Zijk

7gl =1 ke
7], = aore 2 ey 2 AT, ©)

whereAff is the block ofA;; corresponding to thék, ¢) block in&y &;7* py.

See the Appendix for a full proof of Proposition 4. The Cldb&ordan seriesz; i, plays an
important role in Equation 6, which says that the, p;) crossterm contributes to the pointwise
product afp,, onlywhenz;;, > 0. For example,

P1 & p1 = poDp1® p2 D ps. (1)
Soz;,1, = 1for k < 3 andis zero otherwise.



Unfortunately, there are no analytical formulas for findihg Clebsch-Gordan series or coefficients,
and in practice, these computations can take a long time.nigasize however, that as fundamen-
tal quantities, like the digits of, they need only be computechceand stored in a table for future
reference. Due to space limitations, we will not provide ptete details on computing these num-
bers. We refer the reader to Murnaghan [9], who providesmgéfmmulas for computing Clebsch-
Gordan series for pairs of low-order irreducibles, and tpé&mpdix 1 for details about computing
Clebsch-Gordan coefficients. We will also make precompatedficients available on the web.

5 Approximate inference by bandlimiting

We approximate the probability distributioR(o) by fixing a bandlimitB and maintaining the
Fourier transform of only at irreduciblesy, . . . pp. We refer to this set of irreducibles s As on
the real line, smooth functions are generally well appr@tad by only a few Fourier coefficients,
while “wigglier” functions require more. For example, whéh= 3, 5 is the setpg, p1, p2, and
p3, Which corresponds to maintaining marginal probabilitdshe form P(o((i,7)) = (k,£)).
During inference, we follow the procedure outlined in theyious section but ignore the higher
order terms which are not maintained. Pseudocode for baitdt prediction/rollup and Kronecker
conditioning is given in Figures 1 and 2.

Since the Prediction/Rollup step is pointwise in the Faudemain, the update is exact for the
maintained irreducibles because higher order irredugibémnot affect those below the bandlimit.
As in [5], we find that the error from bandlimiting creeps imdbgh the conditioning step. For
example, Equation 7 shows thatf = 1 (so that we maintain first-order marginals), then the
pointwise product spreads information to second-ordegimals. Conversely, pairs of higher-order
irreducibles may propagate information to lower-ordezdurcibles. If a distribution is diffuse, then
most of the energy is stored in low-order Fourier coeffigentyway, and so this is not a big prob-
lem. However, it is when the distribution is sharply concatgd at a small subset of permutations,
that the low-order Fourier projection is unable to faithfutdpproximate the distribution, in many
circumstances, resulting in a bandlimited Fourier Tramafaith negative “marginal probabilities”!
To combat this problem, we present a method for enforcinginegativity.

Projecting to a relaxed marginal polytope The marginal polytope M, is the set of marginals
which are consistent with some joint distribution over petations. We project our approximation
onto a relaxation of the marginal polytop@/’, defined by linear inequality constraints that
marginals be nonnegative, and linear equality constré#atisthey correspond to some legal Fourier
transform. Intuitively, our relaxation produces matricésnarginals which areloubly stochastic
(rows and columns sum to one and all entries are nonnegatiue) satisfy lower-order marginal
consistency (different high-order marginals are conststelower orders).

After each conditioning step, we apply a ‘correction’ to igproximate posterioP(*) by finding
the bandlimited function i\’ which is closest ta®®) in an L, sense. To perform the projection,
we employ the Plancherel Theorem [3] which relatesithelistance between functions éf) to a
distance metric in the Fourier domain.

Proposition 5. S (o) - glo)? = ﬁ > d,, Tr ((fpk —gpk)T, (fpk - ka)> ()
pu k

We formulate the optimization as a quadratic program whggeobjective is to minimize the right
side of Equation 8 — the sum is taken only over the set of miaiathirreducibles3, and subject
to the linear constraints which defirel’.

We remark that even though the projection will always predad-ourier transform corresponding
to nonnegative marginals, there might not necessarilyt @xjsint probability distribution ons,,
consistent with those marginals. In the case of first-ordarginals, however, the existence of
a consistent joint distributiois guaranteed by th8irkhoff-von Neumanrtheorem [10], which
states that a matrix is doubly stochastiand only if it can be written as a convex combination of
permutation matrices. And so for the case of first-order matg, our relaxation is in fact, exact.

6 Related Work

The Identity Management problem was first introduced in [B]als maintains a doubly stochastic
first orderbelief matrixto reason over data associations. Schumitsch et al. [4pis@ similar
idea, but formulated the problem in log-space.



Figure 1:Pseudocode for the Fourier Prediction/Rollup Algorithm.

PREDICTIONROLLUP o
foreach p, € Bdo P\ — QW . BV ;

Figure 2:Pseudocode for the Kronecker Conditioning Algorithm.

KRONECKERCONDITIONING
—_—

foreach py, € B do [L(*)P(ﬂ] «— 0 /lInitialize Posterior
Pk

/[Pointwise Product
foreach p; € B do
foreach p; € Bdo
z «— CGseries(pi, pj) ;
Cij — CGceoef ficients(ps, pj) i Aij — CZ-E . (pri ®§pj) - Oy
for pr € B such thatz;;, # 0 do
for ¢ =1toz do o o
[me(t)} - [me(t)] + T AL AT is the(k, £) block of A,
ol

Pk Pk

7 — [Lm—]?(f)}
PO o o
foreach py, € B do [LU)P@} — % [LU)P(f)} //Normalization

Pk Pk

Kondor et al. [5] were the first to show that the data assameigroblem could be approximately
handled via the Fourier Transform. For conditioning, thepleit a modified FFT factorization
which works on certain simplified observation models. Ouprapch generalizes the type of
observations that can be handled in [5] and is equivalerttersimplified model that they present.
We requireO(D3n?) time in their setting. Their FFT method saves a factobadue to the fact that
certain representation matrices can be shown to be spanselgi we do not prove it, we observe
that the Clebsch-Gordan coefficients,; are typically similarly sparse, which yields an equivalent
running time in practice. In addition, Kondor et al. do notlegks the issue of projecting onto valid
marginals, which, as we show in our experimental resulffsiidamental in practice.

Willsky [8] was the first to formulate a nonabelian versiontloé FFT algorithm (for Metacyclic
groups) as well as to note the connection between pointwisdupts and Kronecker product
decompositions for general finite groups. In this paper, eddress approximate inference, which is
necessary given the complexity of inference for the Symmetric group.

7 Experimental results

For smalln, we compared our algorithm to exact inference on synthetiasiets in which tracks are

drawn at random to be observed or swapped. For validationeesuare thé | distance between true

and approximate marginal distributions. In (Fig. 3(a)),aa# several mixings followed by a single

observation, after which we measured error. As expected;thlurier approximation is better when
there are either more mixing events, or when more Fouridficmats are maintained. In (Fig. 3(b))

we allow for consecutive conditioning steps and we see Hatthe projection step is fundamental,
especially when mixing events are rare, reducing the emamdtically. Comparing running times,

it is clear that our algorithm scales gracefully compareth&exact solution (Fig. 3(c)).

We also evaluated our algorithm on data taken from a realar&taf 8 cameras (Fig. 3(d)). In the
data, there are = 11 people walking around a room in fairly close proximity. Tankée the fact
that people can freely leave and enter the room, we mainthsh af the tracks which are external
to the room. Each time a new track leaves the room, it is adoledet list and a mixing event is
called to allow form? pairwise swaps amongst the external tracks.

The number of mixing events is approximately the same as uh&ar of observations. For each
observation, the network returns a color histogram of tteb ldssociated with one track. The
task after conditioning on each observation is to predienidies for all tracks inside the room,
and the evaluation metric is the fraction of accurate pteatis. We compared against a baseline
approach of predicting the identity of a track based on thestrmecently observed histogram
at that track. This approach is expected to be accurate wiene are many observations and
discriminative appearance models, neither of which oublgr afforded. As (Fig. 3(e)) shows,
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Figure 3:Evaluation on synthetic ((a)-(c)) and real camera network ((J)&g.

both the baseline and first order model(without projectian¢d poorly, while the projection step
dramatically boosted the accuracy. To illustrate the difficof predicting based on appearance
alone, the rightmost bar reflects the performance dbraniscienttracker who knows the result of
each mixing event and is therefore left only with the taskisfidguishing between appearances.

8 Conclusions

We presented a formulation of hidden Markov model inferandbe Fourier domain. In particular,

we developed the Kronecker Conditioning algorithm whichfgrens a convolution-like operation

on Fourier coefficients to find the Fourier transform of thetpdor distribution. We argued that
bandlimited conditioning can result in Fourier coefficemthich correspond to no distribution, but
that the problem can be remedied by projecting to a relaxatfdhe marginal polytope. Our eval-
uation on data from a camera network shows that our methageidorm well when compared to

the optimal solution in small problems, or to an omniscieatker in large problems. Furthermore,
we demonstrated that our projection step is fundamentaitimiing these high-quality results.

We conclude by remarking that the mathematical framewovkld@ed in this paper is quite general.
In fact, both the prediction/rollup and conditioning forfations hold over any finite group, provid-
ing a principled method for approximate inference for peof$ with underlying group structure.
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