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Abstract
Permutations are ubiquitous in many real world problems, such as voting,
rankings and data association. Representing uncertainty over permutations is
challenging, since there aren! possibilities, and typical compact representations
such as graphical models cannot efficiently capture the mutual exclusivity con-
straints associated with permutations. In this paper, we use the “low-frequency”
terms of a Fourier decomposition to represent such distributions compactly. We
presentKronecker conditioning, a general and efficient approach for maintaining
these distributions directly in the Fourier domain. Low order Fourier-based
approximations can lead to functions that do not correspondto valid distributions.
To address this problem, we present an efficient quadratic program defined
directly in the Fourier domain to project the approximationonto a relaxed form
of the marginal polytope. We demonstrate the effectivenessof our approach on a
real camera-based multi-people tracking setting.

1 Introduction

Permutations arise naturally in a variety of real situations such as card games, data association
problems, ranking analysis, etc. As an example, consider a sensor network that tracks the positions
of n people, but can only gather identity information when they walk near certain sensors. Such
mixed-modality sensor networks are an attractive alternative to exclusively using sensors which can
measure identity because they are potentially cheaper, easier to deploy, and less intrusive. See [1]
for a real deployment. A typical tracking system maintains tracks ofn people and the identity of
the person corresponding to each track. What makes the problem difficult is that identities can be
confused when tracks cross in what we call mixing events. Maintaining accurate track-to-identity
assignments in the face of these ambiguities based on identity measurements is known as the
Identity Management Problem[2], and is known to beNP -hard. Permutations pose a challenge for
probabilistic inference, because distributions on the group of permutations onn elements require
storing at leastn! − 1 numbers, which quickly becomes infeasible asn increases. Furthermore,
typical compact representations, such as graphical models, cannot capture the mutual exclusivity
constraints associated with permutations.

Diaconis [3] proposes maintaining a small subset of Fouriercoefficients of the actual distribution al-
lowing for a principled tradeoff between accuracy and complexity. Schumitsch et al. [4] use similar
ideas to maintain a particular subset of Fourier coefficients of the log probability distribution. Kon-
dor et al. [5] allow for general sets of coefficients, but assume a restrictive form of the observation
model in order to exploit an efficient FFT factorization. Themain contributions of this paper are:

• A new, simple and general algorithm,Kronecker Conditioning, which performs all proba-
bilistic inference operations completely in the Fourier domain. Our approach is general, in
the sense that it can address any transition model or likelihood function that can be repre-
sented in the Fourier domain, such as those used in previous work, and can represent the
probability distribution with any desired set of Fourier coefficients.

• We show that approximate conditioning can sometimes yield Fourier coefficients which do
not correspond to any valid distribution, and present a method for projecting the result back
onto a relaxation of the marginal polytope.

• We demonstrate the effectiveness of our approach on a real camera-based multi-people
tracking setting.
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2 Filtering over permutations
In identity management, a permutationσ represents a joint assignment of identities to internal tracks,
with σ(i) being the track belonging to theith identity. When people walk too closely together, their
identities can be confused, leading to uncertainty overσ. To model this uncertainty, we use aHidden
Markov Modelon permutations, which is a joint distribution overP (σ(1), . . . , σ(T ), z(1), . . . , z(T ))
which factors as:

P (σ(1)
, . . . , σ

(T )
, z

(1)
, . . . , z

(T )) = P (z(1)|σ(1))
Y

t

P (zt|σ(t)) · P (σ(t)|σ(t−1)),

where theσ(t) are latent permutations and thez(t) denote observed variables. The conditional
probability distributionP (σ(t)|σ(t−1)) is called thetransition model, and might reflect for example,
that the identities belonging to two tracks were swapped with some probability. The distribution
P (z(t)|σ(t)) is called theobservation model, which might capture a distribution over the color of
clothing for each individual.

We focus onfiltering, in which one queries the HMM for the posterior at some timestep, conditioned
on all past observations. Given the distributionP (σ(t)|z(1), . . . , z(t)), we recursively compute
P (σ(t+1)|z(1), . . . , z(t+1)) in two steps: aprediction/rollup step and aconditioning step. The
first updates the distribution by multiplying by the transition model and marginalizing out the
previous timestep: P (σ(t+1)|z(1), . . . , z(t)) =

∑
σ(t) P (σ(t+1)|σ(t))P (σ(t)|z(1), . . . , z(t)).

The second conditions the distribution on an observationz(t+1) using Bayes rule:
P (σ(t+1)|z(1), . . . , z(t+1)) ∝ P (z(t+1)|σ(t+1))P (σ(t+1)|z(1), . . . , z(t)). Since there aren!
permutations, a single update requiresO((n!)2) flops and is consequently intractable for all but
very smalln. The approach that we advocate is to maintain a compact approximation to the true
distribution based on the Fourier transform. As we discuss later, the Fourier based approximation
is equivalent to maintaining a set of low-order marginals, rather than the full joint, which we regard
as being analagous to anAssumed Density Filter[6].

3 Fourier projections of functions on the Symmetric Group

Over the last 50 years, the Fourier Transform has been ubiquitously applied to everything digital,
particularly with the invention of the Fast Fourier Transform. On the real line, the Fourier Transform
is a well-studied method for decomposing a function into a sum of sine and cosine terms over
a spectrum of frequencies. Perhaps less familiar, is its group theoretic generalization, which we
review in this section with an eye towards approximating functions on the group of permutations, the
Symmetric Group. For permutations onn objects, the Symmetric Group will be abbreviated bySn.
The formal definition of the Fourier Transform relies on the theory of group representations, which
we briefly discuss first. Our goal in this section is to motivate the idea that the Fourier transform of
a distributionP is related to certain marginals ofP . For references on this subject, see [3].

Definition 1. A representationof a groupG is a mapρ from G to a set of invertibledρ × dρ

matrix operators which preserves algebraic structure in the sense that for allσ1, σ2 ∈ G,
ρ(σ1σ2) = ρ(σ1) · ρ(σ2). The matrices which lie in the image of this map are called the
representation matrices, and we will refer todρ as thedegreeof the representation.

Representations play the role of basis functions, similar to that of sinusoids, in Fourier theory. The
simplest basis functions are constant functions — and our first example of a representation is thetriv-
ial representationρ0 : G → R which maps every element ofG to 1. As a more pertinent example,
we define the1st order permutation representationof Sn to be the degreen representation,τ1, which
maps a permutationσ to its corresponding permutation matrix given by:[τ1(σ)]ij = 1 {σ(j) = i}.
For example, the permutation inS3 which swaps the second and third elements maps to:

τ1(1 7→ 1, 2 7→ 3, 3 7→ 2) =

0
@

1 0 0
0 0 1
0 1 0

1
A .

Theτ1 representation can be thought of as a collection ofn2 functions at once, one for each matrix
entry, [τ1(σ)]ij . There are other possible permutation representations - for example the2nd order
unordered permutation representation, τ2, is defined by the action of a permutation on unordered
pairs of objects, ([ρ(σ)]{i,j},{ℓ,k} = 1 {σ({ℓ, k}) = {i, j}}), and is a degreen(n−1)

2 representation.
And the list goes on to include many more complicated representations.

2



It is useful to think of two representations as being the sameif the representation matrices are equal
up to some consistent change of basis. This idea is formalized by declaring two representationsρ
andτ to beequivalentif there exists an invertible matrixC such thatC−1 · ρ(σ) · C = τ(σ) for all
σ ∈ G. We write this asρ ≡ τ .

Most representations can be seen as having been built up by smaller representations. We say that
a representationρ is reducibleif there exist smaller representationsρ1, ρ2 such thatρ ≡ ρ1 ⊕ ρ2
where⊕ is defined to be thedirect sum representation:

ρ1 ⊕ ρ2(g) ,

„
ρ1(g) 0

0 ρ2(g)

«
. (1)

In general, there are infinitely many inequivalent representations. However, for any finite group,
there is always a finite collection of atomic representations which can be used to build up any
other representation using direct sums. These representations are referred to as theirreducibles
of a group, and they are simply the collection of representations which are not reducible. We will
refer to the set of irreducibles byR. It can be shown that any representation of a finite groupG
is equivalent to a direct sum of irreducibles [3], and hence,for any representationτ , there exists a
matricesC for which C−1 · τ · C = ⊕ρi∈R ⊕ ρi, where the inner⊕ refers to some finite number
of copies of the irreducibleρi.

Describing the irreducibles ofSn up to equivalence is a subject unto itself; We will simply say
that there is a natural way to order the irreducibles ofSn that corresponds to ‘simplicity’ in the
same way that low frequency sinusoids are simpler than higher frequency ones. We will refer to the
irreducibles in this order asρ0, ρ1, . . . . For example, the first two irreducibles form the first order
permutation representation (τ1 ≡ ρ0 ⊕ ρ1), and the second order permutation representation can be
formed by the first 3 irreducibles.

Irreducible representation matrices are not always orthogonal, but they can always be chosen to be
so (up to equivalence). For notational convenience, the irreducible representations in this paper will
always be assumed to be orthogonal.

3.1 The Fourier transform

On the real line, the Fourier Transform corresponds to computing inner products of a function with
sines and cosines at varying frequencies. The analogous definition for finite groups replaces the
sinusoids by group representations.

Definition 2. Let f : G → R be any function on a groupG and letρ be any representation onG.
TheFourier Transformof f at the representationρ is defined to be:̂fρ =

∑
σ f(σ)ρ(σ).

There are two important points which distinguish this Fourier Transform from the familiar version
on the real line — it is matrix-valued, and instead of real numbers, the inputs tôf arerepresentations
of G. The collection of Fourier Transforms off at all irreducibles form the Fourier Transform off .
As in the familiar case, there is an inverse transform given by:

f(σ) =
1

|G|

X

k

dρk
Tr

h
f̂

T
ρk
· ρk(σ)

i
, (2)

wherek indexes over the collection of irreducibles ofG.

We provide two examples for intuition. For functions on the real line, the Fourier Transform at
zero gives the DC component of a signal. This is also true for functions on a group; Iff : G → R

is any function, then the Fourier Transform off at the trivial representation is constant with
f̂ρ0

=
∑

σ f(σ). Thus, for any probability distributionP , we haveP̂ρ0
= 1. If P were the uniform

distribution, thenP̂ρ = 0 at all irreducibles except at the trivial representation.

The Fourier Transform atτ1 also has a simple interpretation:

[f̂τ1 ]ij =
X

σ∈Sn

f(σ)[τ1(σ)]ij =
X

σ∈Sn

f(σ)1 {σ(j) = i} =
X

σ:σ(j)=i

f(σ).

Thus, ifP is a distribution, then̂Pτ1
is a matrix of marginal probabilties, where theij-th element

is the marginal probability that a random permutation drawnfrom P maps elementj to i. Similarly,
the Fourier transform ofP at the second order permutation representation is a matrix of marginal
probabilities of the formP (σ({i, j}) = {k, ℓ}).
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In Section 5, we will discuss function approximation by bandlimiting the Fourier coefficients, but
this example should illustrate the fact that maintaining Fourier coefficients at low-order irreducibles
is the same as maintaining low-order marginal probabilities, while higher order irreducibles
correspond to more complicated marginals.

4 Inference in the Fourier domain
Bandlimiting allows for compactly storing a distribution over permutations, but the idea is rather
moot if it becomes necessary to transform back to the primal domain each time an inference
operation is called. Naively, the Fourier Transform onSn scales asO((n!)2), and even the fastest
Fast Fourier Transforms for functions onSn are no faster thanO(n! log(n!)) (see [7] for example).
To resolve this issue, we present a formulation of inferencewhich operates solely in the Fourier
domain, allowing us to avoid a costly transform. We begin by discussing exact inference in the
Fourier domain, which is no more tractable than the originalproblem because there aren! Fourier
coefficients, but it will allow us to discuss the bandlimiting approximation in the next section. There
are two operations to consider:prediction/rollup, andconditioning. The assumption for the rest of
this section is that the Fourier Transforms of the transition and observation models are known. We
discuss methods for obtaining the models in Section 7.

4.1 Fourier prediction/rollup

We will consider one particular type of transition model — that of a random walk over a group.
This model assumes thatσ(t+1) is generated fromσ(t) by drawing a random permutationτ (t)

from some distributionQ(t) and settingσ(t+1) = τ (t)σ(t). In our identity management example,
τ (t) represents a random identity permutation that might occur among tracks when they get close
to each other (amixing event), but the random walk model appears in other applications such as
modeling card shuffles [3]. The Fourier domain Prediction/Rollup step is easily formulated using
the convolution theorem (see also [3]):

Proposition 3. LetQ andP be probability distributions onSn. Define the convolution ofQ andP to

be the function[Q ∗ P ] (σ1) =
∑

σ2
Q(σ1 ·σ

−1
2 )P (σ2). Then for any representationρ,

[
Q̂ ∗ P

]

ρ
=

Q̂ρ · P̂ρ, where the operation on the right side is matrix multiplication.

The Prediction/Rollup step for the random walk transition model can be written as a convolution:

P (σ(t+1)) =
X

{(σ(t),τ(t)) : σ(t+1)=τ(t)·σ(t)}

Q
(t)(τ (t))·P (σ(t)) =

X

σ(t)

Q
(t)(σ(t+1)·(σ(t))−1)P (σ(t)) =

h
Q

(t) ∗ P
i
(σ(t+1)).

Then assuming that̂P (t)
ρ andQ̂

(t)
ρ are given, the prediction/rollup update rule is simply:

P̂ (t+1)
ρ ← Q̂(t)

ρ · P̂
(t)
ρ .

Note that the update requires only knowledge ofP̂ and does not requireP . Furthermore, the update
is pointwisein the Fourier domain in the sense that the coefficients at therepresentationρ affect
P̂

(t+1)
ρ onlyatρ.

4.2 Fourier conditioning

An application of Bayes rule to find a posterior distributionP (σ|z) after observing some evidencez
requires apointwise productof likelihoodL(z|σ) and priorP (σ), followed by a normalization step.
We showed earlier that the normalization constant

∑
σ L(z|σ) · P (σ) is given by the Fourier trans-

form of L̂(t)P (t) at the trivial representation — and therefore the normalization step of conditioning

can be implemented by simply dividing each Fourier coefficient by the scalar
[
L̂(t)P (t)

]

ρ0

.

The pointwise product of two functionsf andg, however, is trickier to formulate in the Fourier
domain. For functions on the real line, the pointwise product of functions can be implemented
by convolving the Fourier coefficients of̂f and ĝ, and so a natural question is: can we apply a
similar operation for functions over other groups? Our answer to this is that there is an analogous
(but more complicated) notion of convolution in the Fourierdomain of a general finite group. We
present a convolution-based conditioning algorithm whichwe callKronecker Conditioning, which,
in contrast to the pointwise nature of the Fourier Domain prediction/rollup step, and much like
convolution, smears the information at an irreducibleρk to other irreducibles.
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Fourier transforming the pointwise product Our approach to Fourier Transforming the point-
wise product in terms of̂f andĝ is to manipulate the functionf(σ)g(σ) so that it can be seen as the
result of an inverse Fourier Transform. Hence, the goal willbe to find matricesAk (as a function of
f̂ , ĝ) such that for anyσ ∈ G,

f(σ) · g(σ) =
1

|G|

X

k

dρk
Tr

“
A

T
k · ρk(σ)

”
, (3)

whereAk =
[
f̂g

]

ρk

. For anyσ ∈ G we can write the pointwise product in termsf̂ andĝ using the

inverse Fourier Transform (Equation 2):

f(σ) · g(σ) =

"
1

|G|

X

i

dρiTr
“
f̂

T
ρi
· ρi(σ)

”#
·

"
1

|G|

X

j

dρj Tr
“
ĝ

T
ρj
· ρj(σ)

”#

=

„
1

|G|

«2 X

i,j

dρidρj

h
Tr

“
f̂

T
ρi
· ρi(σ)

”
· Tr

“
ĝ

T
ρj
· ρj(σ)

”i
. (4)

Now we want to manipulate this product of traces in the last line to be just one trace (as in
Equation 3), by appealing to some properties of thematrix Kronecker product. The connection
to the pointwise product (first observed in [8]), lies in the property that for any matricesU, V ,
Tr (U ⊗ V ) = (Tr U) · (Tr V ). Applying this to Equation 4, we have:

Tr
“
f̂

T
ρi
· ρi(σ)

”
· Tr

“
ĝ

T
ρj
· ρj(σ)

”
= Tr

““
f̂

T
ρi
· ρi(σ)

”
⊗

“
ĝ

T
ρj
· ρj(σ)

””

= Tr

„“
f̂ρi ⊗ ĝρj

”T

· (ρi(σ)⊗ ρj(σ))

«
, (5)

where the last line follows by standard matrix properties. The term on the right,ρi(σ) ⊗ ρj(σ),
itself happens to be a representation, called theKronecker Product Representation. In general,
the Kronecker Product representation is reducible, and so it can decomposed into a direct sum of
irreducibles. This means that ifρi andρj are any two irreducibles ofG, there exists a similarity
transformCij such that for anyσ ∈ G,

C
−1
ij · [ρi ⊗ ρj ] (σ) · Cij =

M

k

zijkM

ℓ=1

ρk(σ).

The⊕ symbols here refer to a matrix direct sum as in Equation 1,k indexes over all irreducible
representations ofSn, while ℓ indexes over a number ofcopiesof ρk which appear in the de-
composition. We index blocks on the right side of this equation by pairs of indices(k, ℓ). The
number of copies of eachρk is denoted by the integerzijk, the collection of which, taken over
all triples (i, j, k), are commonly referred to as theClebsch-Gordanseries. Note that we allow
the zijk to be zero, in which caseρk does not contribute to the direct sum. The matricesCij are
known as theClebsch-Gordan coefficients. The Kronecker Product Decompositionproblem is
that of finding the irreducible components of the Kronecker product representation, and thus to
find the Clebsch-Gordan series/coefficients for each pair ofrepresentations(ρi, ρj). Decomposing
the Kronecker product inside Equation 5 using the Clebsch-Gordan series/coefficients yields the
desired Fourier Transform, which we summarize here:

Proposition 4. Let f̂ , ĝ be the Fourier Transforms of functionsf andg respectively, and for each

ordered pair of irreducibles(ρi, ρj), define the matrix:Aij , C−1
ij ·

(
f̂ρi
⊗ ĝρj

)
· Cij . Then the

Fourier tranform of the pointwise productfg is:
h

cfg
i

ρk

=
1

dρk
|G|

X

ij

dρidρj

zijkX

ℓ=1

A
kℓ
ij , (6)

whereAkℓ
ij is the block ofAij corresponding to the(k, ℓ) block in⊕k ⊕

zijk

ℓ ρk.

See the Appendix for a full proof of Proposition 4. The Clebsch-Gordan series,zijk, plays an
important role in Equation 6, which says that the(ρi, ρj) crossterm contributes to the pointwise
product atρk onlywhenzijk > 0. For example,

ρ1 ⊗ ρ1 ≡ ρ0 ⊕ ρ1 ⊕ ρ2 ⊕ ρ3. (7)

Soz1,1,k = 1 for k ≤ 3 and is zero otherwise.
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Unfortunately, there are no analytical formulas for findingthe Clebsch-Gordan series or coefficients,
and in practice, these computations can take a long time. We emphasize however, that as fundamen-
tal quantities, like the digits ofπ, they need only be computedonceand stored in a table for future
reference. Due to space limitations, we will not provide complete details on computing these num-
bers. We refer the reader to Murnaghan [9], who provides general formulas for computing Clebsch-
Gordan series for pairs of low-order irreducibles, and to Appendix 1 for details about computing
Clebsch-Gordan coefficients. We will also make precomputedcoefficients available on the web.

5 Approximate inference by bandlimiting
We approximate the probability distributionP (σ) by fixing a bandlimitB and maintaining the
Fourier transform ofP only at irreduciblesρ0, . . . ρB . We refer to this set of irreducibles asB. As on
the real line, smooth functions are generally well approximated by only a few Fourier coefficients,
while “wigglier” functions require more. For example, whenB = 3, B is the setρ0, ρ1, ρ2, and
ρ3, which corresponds to maintaining marginal probabilitiesof the form P (σ((i, j)) = (k, ℓ)).
During inference, we follow the procedure outlined in the previous section but ignore the higher
order terms which are not maintained. Pseudocode for bandlimited prediction/rollup and Kronecker
conditioning is given in Figures 1 and 2.

Since the Prediction/Rollup step is pointwise in the Fourier domain, the update is exact for the
maintained irreducibles because higher order irreducibles cannot affect those below the bandlimit.
As in [5], we find that the error from bandlimiting creeps in through the conditioning step. For
example, Equation 7 shows that ifB = 1 (so that we maintain first-order marginals), then the
pointwise product spreads information to second-order marginals. Conversely, pairs of higher-order
irreducibles may propagate information to lower-order irreducibles. If a distribution is diffuse, then
most of the energy is stored in low-order Fourier coefficients anyway, and so this is not a big prob-
lem. However, it is when the distribution is sharply concentrated at a small subset of permutations,
that the low-order Fourier projection is unable to faithfully approximate the distribution, in many
circumstances, resulting in a bandlimited Fourier Transform with negative “marginal probabilities”!
To combat this problem, we present a method for enforcing nonnnegativity.

Projecting to a relaxed marginal polytope The marginal polytope,M, is the set of marginals
which are consistent with some joint distribution over permutations. We project our approximation
onto a relaxation of the marginal polytope,M′, defined by linear inequality constraints that
marginals be nonnegative, and linear equality constraintsthat they correspond to some legal Fourier
transform. Intuitively, our relaxation produces matricesof marginals which aredoubly stochastic
(rows and columns sum to one and all entries are nonnegative), and satisfy lower-order marginal
consistency (different high-order marginals are consistent at lower orders).

After each conditioning step, we apply a ‘correction’ to theapproximate posteriorP (t) by finding
the bandlimited function inM′ which is closest toP (t) in anL2 sense. To perform the projection,
we employ the Plancherel Theorem [3] which relates theL2 distance between functions onSn to a
distance metric in the Fourier domain.
Proposition 5. ∑

σ

(f(σ)− g(σ))2 =
1

|G|

∑

k

dρk
Tr

((
f̂ρk
− ĝρk

)T

·
(
f̂ρk
− ĝρk

))
. (8)

We formulate the optimization as a quadratic program where the objective is to minimize the right
side of Equation 8 — the sum is taken only over the set of maintained irreducibles,B, and subject
to the linear constraints which defineM′.

We remark that even though the projection will always produce a Fourier transform corresponding
to nonnegative marginals, there might not necessarily exist a joint probability distribution onSn

consistent with those marginals. In the case of first-order marginals, however, the existence of
a consistent joint distributionis guaranteed by theBirkhoff-von Neumanntheorem [10], which
states that a matrix is doubly stochasticif and only if it can be written as a convex combination of
permutation matrices. And so for the case of first-order marginals, our relaxation is in fact, exact.

6 Related Work
The Identity Management problem was first introduced in [2] which maintains a doubly stochastic
first orderbelief matrixto reason over data associations. Schumitsch et al. [4] exploits a similar
idea, but formulated the problem in log-space.
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Figure 1:Pseudocode for the Fourier Prediction/Rollup Algorithm.

PREDICTIONROLLUP
foreachρk ∈ B do P̂

(t+1)
ρk

← Q̂
(t)
ρk
· P̂

(t)
ρk

;

Figure 2:Pseudocode for the Kronecker Conditioning Algorithm.

KRONECKERCONDITIONING

foreachρk ∈ B do
h
L̂(t)P (t)

i
ρk

← 0 //Initialize Posterior

//Pointwise Product
foreachρi ∈ B do

foreachρj ∈ B do
z ← CGseries(ρi, ρj) ;

Cij ← CGcoefficients(ρi, ρj) ; Aij ← CT
ij ·

“
f̂ρi ⊗ ĝρj

”
· Cij ;

for ρk ∈ B such thatzijk 6= 0 do
for ℓ = 1 to zk doh

L̂(t)P (t)
i

ρk

←
h
L̂(t)P (t)

i
ρk

+
dρi

dρj

dρk
n!

Akℓ
ij //Akℓ

ij is the(k, ℓ) block ofAij

Z ←
h
L̂(t)P (t)

i
ρ0

;

foreachρk ∈ B do
h
L̂(t)P (t)

i
ρk

← 1
Z

h
L̂(t)P (t)

i
ρk

//Normalization

Kondor et al. [5] were the first to show that the data association problem could be approximately
handled via the Fourier Transform. For conditioning, they exploit a modified FFT factorization
which works on certain simplified observation models. Our approach generalizes the type of
observations that can be handled in [5] and is equivalent in the simplified model that they present.
We requireO(D3n2) time in their setting. Their FFT method saves a factor ofD due to the fact that
certain representation matrices can be shown to be sparse. Though we do not prove it, we observe
that the Clebsch-Gordan coefficients,Cij are typically similarly sparse, which yields an equivalent
running time in practice. In addition, Kondor et al. do not address the issue of projecting onto valid
marginals, which, as we show in our experimental results, isfundamental in practice.

Willsky [8] was the first to formulate a nonabelian version ofthe FFT algorithm (for Metacyclic
groups) as well as to note the connection between pointwise products and Kronecker product
decompositions for general finite groups. In this paper, we address approximate inference, which is
necessary given then! complexity of inference for the Symmetric group.

7 Experimental results
For smalln, we compared our algorithm to exact inference on synthetic datasets in which tracks are
drawn at random to be observed or swapped. For validation we measure theL1 distance between true
and approximate marginal distributions. In (Fig. 3(a)), wecall several mixings followed by a single
observation, after which we measured error. As expected, the Fourier approximation is better when
there are either more mixing events, or when more Fourier coefficients are maintained. In (Fig. 3(b))
we allow for consecutive conditioning steps and we see that that the projection step is fundamental,
especially when mixing events are rare, reducing the error dramatically. Comparing running times,
it is clear that our algorithm scales gracefully compared tothe exact solution (Fig. 3(c)).

We also evaluated our algorithm on data taken from a real network of 8 cameras (Fig. 3(d)). In the
data, there aren = 11 people walking around a room in fairly close proximity. To handle the fact
that people can freely leave and enter the room, we maintain alist of the tracks which are external
to the room. Each time a new track leaves the room, it is added to the list and a mixing event is
called to allow form2 pairwise swaps amongst them external tracks.

The number of mixing events is approximately the same as the number of observations. For each
observation, the network returns a color histogram of the blob associated with one track. The
task after conditioning on each observation is to predict identities for all tracks inside the room,
and the evaluation metric is the fraction of accurate predictions. We compared against a baseline
approach of predicting the identity of a track based on the most recently observed histogram
at that track. This approach is expected to be accurate when there are many observations and
discriminative appearance models, neither of which our problem afforded. As (Fig. 3(e)) shows,
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Figure 3:Evaluation on synthetic ((a)-(c)) and real camera network ((d),(e)) data.

both the baseline and first order model(without projection)fared poorly, while the projection step
dramatically boosted the accuracy. To illustrate the difficulty of predicting based on appearance
alone, the rightmost bar reflects the performance of anomniscienttracker who knows the result of
each mixing event and is therefore left only with the task of distinguishing between appearances.

8 Conclusions
We presented a formulation of hidden Markov model inferencein the Fourier domain. In particular,
we developed the Kronecker Conditioning algorithm which performs a convolution-like operation
on Fourier coefficients to find the Fourier transform of the posterior distribution. We argued that
bandlimited conditioning can result in Fourier coefficients which correspond to no distribution, but
that the problem can be remedied by projecting to a relaxation of the marginal polytope. Our eval-
uation on data from a camera network shows that our methods outperform well when compared to
the optimal solution in small problems, or to an omniscient tracker in large problems. Furthermore,
we demonstrated that our projection step is fundamental to obtaining these high-quality results.

We conclude by remarking that the mathematical framework developed in this paper is quite general.
In fact, both the prediction/rollup and conditioning formulations hold over any finite group, provid-
ing a principled method for approximate inference for problems with underlying group structure.
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