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Shared independence structure

While Figures 1(a) and 1(b) (on the next page) encode
distinct families of distributions, they share a common
subset of independence assumptions. It turns out that
any distributions consistent with either of the two hi-
erarchies must also be consistent with what we call a
3-way decomposition. We de�ne a d-way decomposi-
tion to be a distribution with a single level of hierarchy,
but instead of partitioning the entire item set into just
two subsets, one partitions into d subsets, then inter-
leaves the relative rankings of each of the d subsets
together to form a joint ranking of items. Any distri-
bution consistent with either Figure 1(b) or 1(a) must
also be consistent with the structure of Figure 1(c).
More generally, we have:

Proposition 1. If h is a hierarchical ri�e indepen-
dent model with d leaf sets, then h can also be written
as a d-way decomposition.

Proof. We proceed by induction. Suppose the result
holds for Sn′ for all n

′ < n. We want to establish that
the result also holds for Sn. If h factors according to
a hierarchical ri�e independent model, then it can be
written as h = m · fA · fB , where m is the interleaving
distribution, and fA, fB themselves factor as hierar-
chical ri�e independent distributions with, say, d1 and
d2 leaf sets, respectively (where d1 + d2 = d). By the
hypothesis, since |A|, |B| < n, we can factor both fA
and gB as d1 and d2-way decompositions respectively.
We can therefore write fA and gB as:

fA(πA) = mA(τA1,...,Ad1
) ·

d1Y
i=1

fAi (φAi(πA))

gB(πB) = mB(τB1,...,Bd2
) ·

d2Y
i=1

gBi (φBi(πB))

Substituting these decompositions into the factoriza-
tion of the distribution h, we have:

h(σ) = m(τA,B(σ))fA(φA(σ))gB(φB(σ))

=
“
m(τA,B(σ))mA(τA1...,Ad1

)mB(τB1,...,Bd2
)
”

·
d1Y

i=1

fAi (φAi(φA(σ)))

d2Y
i=1

gBi (φBi(φB(σ)))

= m̃(τA1,...,Ad1 ,B1...,Bd2
)

·
d1Y

i=1

fAi (φAi(σ))

d2Y
i=1

gBi (φBi(σ)) ,

where the last line follows because any legitimate in-
terleaving of the sets A and B is also a legitimate inter-
leaving of the sets A1, . . . , Ad1 , B1, . . . , Bd2 and since
φAi

(φA(σ)) = φAi
(σ). This shows that the distribu-

tion h factors as a d1 + d2-way decomposition, and
concludes the proof.

Ri�ed independence criterion

Our objective is de�ned as:

F(A) ≡ I(σ(A) ; φB(σ)) + I(σ(B) ; φA(σ)), (0.1)

Proposition 2. F(A) = 0 is a necessary and su�-
cient criterion for a subset A ⊂ {1, . . . , n} to be ri�e
independent of its complement, B.

Proof. Suppose A and B are ri�e independent. We
�rst claim that σ(A) and φB(σ) are independent. To
see this, observe that the absolute ranks of A, σ(A),
are determined by the relative rankings of A, φA(σ)
and the interleaving τA,B(σ). By the assumption that
A and B are ri�e independent, we know that the rela-
tive rankings of A and B (φA(σ) and φB(σ)), and the
interleaving τA,B(σ) are independent, establishing the
claim. The argument that σ(B) and φA(σ) are inde-
pendent is similar, thus establishing one direction of
the proposition.
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(a) Example of hierarchi-
cal ri�ed independence
structure on S6
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(b) Another example, not
equivalent to (a)
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(c) 3-way decomposition
for S6 (generalizes the
class of distributions pa-
rameterized by (a), (b)
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(d) Hierarchical decom-
position into singleton
subsets (each leaf set
consists of a single item)

Figure 1. Examples of distinct hierarchical ri�e independent structures

To establish the reverse direction, assume that Equa-
tion 0.1 evaluates to zero on sets A and B. It
follows that σ(A) ⊥ φB(σ) and φA(σ) ⊥ σ(B).
Now, as a converse to the observation from above,
note that the absolute ranks of A determine the
relative ranks of A, φA(σ), as well as the inter-
leaving τA,B(σ). Similarly, σ(B) determines φB(σ)
and τA,B(σ). Thus, (φA(σ), τA,B(σ)) ⊥ φB(σ) and
φA(σ) ⊥ (τA,B(σ), φB(σ)). It then follows that
φA(σ) ⊥ τA,B(σ) ⊥ φB(σ).

Sample complexity analysis

Lemma 3 (adapted from (Hö�gen, 1993)). The en-
tropy of a discrete random variable with arity R can be
estimated to within accuracy ∆ with probability 1 − β
using O

(
R2

∆2 log2 R
∆ log R

β

)
i.i.d samples and the same

time.

Lemma 4. The collection of mutual informations
Ii;j,k can be estimated to within accuracy ∆ for all
triplets (i, j, k) with probability at least 1 − γ using

S(∆, γ) ≡ O
(
n2

∆2 log2 n
∆ log n4

γ

)
i.i.d. samples and the

same amount of time.

Proof. Fix a 0 < γ ≤ 1 and ∆. For any �xed
triplet (i, j, k), Ho�gen's result (Lemma 3) implies
that H(σi;σj < σk) can be estimated with accu-
racy ∆ with probability at least 1 − γ/n3 using

O
(
n2

∆2 log2 n
∆ log n4

γ

)
i.i.d. samples since the variable

(σi, σj < σk) has arity 2n and setting β ≡ γ
n3 .

Estimating the mutual information for the same triplet
therefore requires the same sample complexity by the
expansion: Ii;j,k = H(σi) + H(σj < σk) −H(σi;σj <
σk). Now we use a simple union bound to bound the
probability that the collection of mutual informations
over all triplets is estimated to within ∆ accuracy. De-
�ne ∆i,j,k ≡ Ii;j,k − Îi;j,k.

P (|∆i,j,k| < ∆, ∀(i, j, k)) ≥ 1−
X
i,j,k

P (|∆i,j,k| ≥ ∆),

≥ 1− n3 · γ
n3
,

≥ 1− γ.

Lemma 5. Fix k ≤ n/2. and let A be a k-subset of
{1, . . . , n} with A ri�e independent of its complement
B. Let A′ be a k-subset with A′ 6= A or B. If A
and B are each ε-third order strongly connected, we
have F̃(A′) = F̃(B′) > ψ(n, k) · ε, where ψ(n, k) ≡
(n− k)(n− 2k).

Proof. Let us �rst establish some notation. Given a
subset X ⊂ {1, . . . , n}, de�ne

ΩintX ≡ {(x; y, z) : x, y, z ∈ X}.

Thus ΩintA and ΩintB are the sets of triplets whose in-
dices are all internal to A or internal to B respectively.
We de�ne ΩcrossA′,B′ to be the set of triplets which �cross�
between the sets A and B:

ΩcrossA′,B′ ≡ {(x; y, z) : x ∈ A, y, z ∈ B, orx ∈ B, y, z ∈ A}.

The goal of this proof is to use the strong connectiv-
ity assumptions to lower bound F̃(A′). In particular,
due to strong connectivity, each triplet inside ΩcrossA′,B′

that also lies in either ΩintA or ΩintB must contribute at
least ε to the objective function F̃(A′). It therefore
su�ces to lower bound the number of triplets which
cross between A′ and B′, but are internal to either A
or B (i.e., |ΩcrossA′,B′ ∩ (ΩintA ∪ΩintB )|). De�ne ` ≡ |A∩A′|
and note that 0 ≤ ` < k. It is straightforward to
check that: |A ∩ B′| = k − `, |B ∩ A′| = k − `, and
|B ∩B′| = (n− k)− (k − `) = n+ `− 2k.
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|Ωcross
A′,B′ ∩ (Ωint

A ∪ Ωint
B )| = |Ωcross

A′,B′ ∩ Ωint
A |+ |Ωcross

A′,B′ ∩ Ωint
B |

≥ `(k − `)2 + `2(k − `)
+ (k − `)(n+ `− 2k)2

+ (n+ `− 2k)(k − `)2

≥ (k − `) ((n− k)(n− 2k) + `n)

≥ k ((n− k)(n− 2k) + kn) .

We do want the bound above to depend on `. In-
tuitively, for a �xed k and n, the above expression is
minimized when either ` = 0 or k − 1 (a more formal
argument is shown below in the proof of Lemma 6).
Plugging ` = 0 and k − 1 and bounding from below
yields:

|ΩcrossA′,B′ ∩ (ΩintA ∪ ΩintB )| ≥ min (k(n− k)(n− 2k),

(n− k)(n− 2k) + n(k − 1)])
≥ (n− k)(n− 2k).

Finally due to strong connectivity, we know that for
each triplet in ΩintA ∪ ΩintB , we have Ix;y,z > ε, thus
each edge in ΩcrossA′,B′ ∩ (ΩintA ∪ΩintB ) contributes at least
ε to F̃(A′), establishing the desired result.

Lemma 6. Under the same assumptions as Lemma 5,
p(n, k, `) = (k−`) ((n− k)(n− 2k) + `n) is minimized
at either ` = 0 or k − 1.

Proof. Let α = (n− k)(n− 2k). We know that α ≥ 0
since k ≤ n/2 by assumption (and equals zero only
when k = n/2). We want to �nd the ` ∈ {0, . . . , k−1}
which minimizes the concave quadratic function p(`) =
(k − `)(α + `n), the roots of which are ` = k and
` = −α/n (note that −α/n ≤ 0. The minimizer is
thus the element of {0, . . . , k − 1} which is closest to
either of the roots.

Theorem 7. Let A be a k-subset of {1, . . . , n} with
A ri�e independent of its complement B. If A
and B are each ε-third order strongly connected, then

given S(∆, ε) ≡ O
(
n4

ε2 log2 n2

ε log n4

γ

)
i.i.d. samples,

the minimum of F̂ (evaluated over all k-subsets of
{1, . . . , n}) is achieved at exactly the subsets A and
B with probability at least 1− γ.

Proof. Let A′ be a k-subset with A′ 6= A or B. Our
goal is to show that F̂(A′) > F̂(A).

Denote the error between estimated mutual informa-
tion and true mutual information by ∆i;j,k ≡ Îi;j,k −
Ii;j,k. We have:

F̂(A
′
)− F̂(A) =

0B@ X
(i,j,k)∈Ωcross

A′,B′

Îi;j,k

1CA−
0B@ X

(i,j,k)∈Ωcross
A,B

Îi;j,k

1CA
= F̃(A

′
)− F̃(A) +

X
(i,j,k)∈Ωcross

A′,B′

∆i;j,k

−
X

(i,j,k)∈Ωcross
A,B

∆i;j,k

≥ ψ(n, k) · ε+
X

(i,j,k)∈Ωcross
A′,B′

∆i;j,k

−
X

(i,j,k)∈Ωcross
A,B

∆i;j,k

(by Lemma 5 and F̃(A) = 0)

Now suppose assume that all of the estimation errors
∆ are uniformly bounded as:

|∆i;j,k| ≤
ε

4

(
ψ(n, k)

n2k − k2n

)
. (0.2)

And note that |ΩcrossA′,B′ | = |ΩcrossA,B | = k2(n− k) + k(n−
k)2 = n2k − k2n. We have:X
(i,j,k)∈Ωcross

A′,B′

|∆i;j,k| −
X

(i,j,k)∈Ωcross
A,B

|∆i;j,k| ≤ 2 · (n2
k − k2

n)

·
ε

4

„
ψ(n, k)

n2k − k2n

«
≤
εψ(n, k)

2

≤ ε · ψ(n, k)

Combining this bound on the estimation errors with
the bound on F̂(A′)− F̂(A) yields:

F̂(A
′
)− F̂(A) ≥ εψ(n, k)

−

0B@ X
(i,j,k)∈Ωcross

A′,B′

|∆i;j,k| −
X

(i,j,k)∈Ωcross
A,B

|∆i;j,k|

1CA
≥
εψ(n, k)

2

> 0,

which is almost what we want to show. There remains
one thing to address. How many samples do we require
to achieve the bound assumed in Equation 0.2 with
high probability? Observe that the bound simpli�es
as,

ε

4

„
ψ(n, k)

n2k − k2n

«
=
ε

4

„
(n− k)(n− 2k)

nk(n− k)

«
=
ε

4

„
n− 2k

nk

«
,
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which behaves O (ε) when k is O(1), but like O
(
ε
n

)
when k is O(n). Applying the sample complexity
result of Lemma 4 with ∆ = O(ε/n), we see that

given O
(
n4

ε2 log2 n2

ε log n4

γ

)
i.i.d. samples, the bound

in Equation 0.2 holds with probability 1− γ, conclud-
ing the proof.

Running time complexity discussion

We need to compute the mutual information quantities
Ii;j,k for all triplets i, j, k from m samples. These can
be computed in O(mn3) time.

The exhaustive method for �nding the k-subset which
minimizes F̂ requires evaluating the objective function
at

(
n
k

)
= O(nk) subsets. What is the complexity of

evaluating F̂ at a particular partition A,B? We need
to sum the precomputed mutual informations over the
number of triangles that cross between A and B. If
|A| = k and |B| = n − k, then we can bound the
number of such triangles by k(n − k)2 + k2(n − k) =
O(kn2). Thus, we require O(nk + kn2) optimization
time, leading to a bound of O(knk+2+mn3) total time.

The anchors method requires us to (again) precompute
mutual informations. The other seeming bottleneck is
the last step, in which we must evaluate the objective
function F̂ at O(n2) partitions. In reality, if |A| and
|B| are both larger than 1, then a1 can be held �xed
at any arbitrary element, and we must only optimize
over O(n) partitions. When |A| = |B| = 1, then n = 2,
in which case the two sets are trivially ri�e indepen-
dent (independent of the actualy distribution). As we
showed in the previous paragraph, evaluating F̂ re-
quires O(kn2) time, and thus optimization using the
anchors method = O(n3(k+m)) total time. Since k is
much smaller than m (in any meaningful training set),
we can drop it from the big-O notation to get O(mn3)
time complexity, showing that the anchors method is
dominated by the time that is required to precompute
and cache mutual informations.

Encouraging balanced partitions

We have found the following normalized cut based vari-
ation of our objective (Shi & Malik, 2000)) to be use-
ful for detecting ri�ed independence when the size k
is unknown (see Appendix for details).

Fbalanced(A) ≡

P
Ωcross

A,B
Ii;j,kP

Ωcross
A,B

Ii;j,k +
P

Ωint
A

Ii;j,k

+

P
Ωcross

B,A
Ii;j,kP

Ωcross
B,A

Ii;j,k +
P

Ωint
B

Ii;j,k
. (0.3)

Intuitively, the denominator in Equation 0.3 penalizes
subsets whose interiors have small weight. Note that
there exist many variations on the objective function
that encourage balance, but Fbalanced is the one that
we have used in our experiments.
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