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Summary Statistics

• Summary statistics for distributions:

• For certain Á, can reconstruct p from the 
summary!

(mean)

(variance)
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Hilbert Space Embeddings

• Can reconstruct           from         for certain kernels!

• Sample average converges to true mean

Applications

Embed Conditional Distributions 
p(y|x)  µ[p(y|x)]

Regressing Structured 
Objects

Dynamical Systems

Estimating Embedding for P(Y|X)

• Simple case: X binary, Y vector valued

• Can embed two distributions

What if X is continuous or structured? 

Conditional Distributions

• Goal: Estimate embedding from finite sample

• Problem: How can we embed p(Y|X=x) for 
unobserved x?

Key Idea

• If      and       are close,                and                 
will be similar.

Generalize to unobserved x via a kernel on X

Conditional Embedding

Conditional 
Embedding 
Operator

Defining the Conditional Embedding Operator

• Desired properties:

1.

2.

• Covariance operator:

generalization of covariance matrix

Conditional Embedding

• Kernel estimate (m-by-m matrix)

Feature/Gram matrices for training yi

Feature/Gram matrices for training xi

regularization parameter

Sum and Product Rules
Probabilistic 

Relation
Hilbert Space 

Relation

Sum Rule

Product Rule

Can do probabilistic inference with embeddings!

“Ordinary” RKHS embedding Conditional embedding

Training feature vectors

Uniform 
weights Non-uniform

weights

Consistency Guarantee

Theorem: 
converges  to

at the rate:
¹ Y jX = x

O((m¸ )
¡ 1=2 + ¸ 1=2)

¹̂ Y jX = x

• Conditional embeddings harder to estimate 
than ordinary embeddings

• To obtain bias ², fix ¸ ~O(²²) to obtain O(m-1/2) 
convergence

Dynamical Systems

Maintain belief using
Hilbert space 
embeddings

hidden state

observation

Advantages

• Applies to any domain with a kernel

Eg. reals, rotations, permutations, strings

• Applies to more general distributions

Eg. multimodal, skewed 

• Linear dynamics model (Kalman filter optimal):

Evaluation with Linear Dynamics
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Dynamical systems with
Hilbert space embeddings 
works better
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Future Directions

• Learn dynamical systems from sequences of 
observations (without the hidden states)

• Generalize inference procedures to handle 
more complicated models (e.g., Bayesian 
networks, Markov random fields)

• Formulate conditional independence tests

• Establish sample complexity bounds for the 
dynamical systems setting

Conclusion

• Embedding conditional distributions

– Generalizes to unobserved X using kernels

• Theoretical analysis of empirical estimator 
convergence

• Application to dynamical systems learning and 
inference

2 3 4 5 6
0.15

0.155

0.16

0.165

0.17

0.175

0.5N(-0.2,10
-2

I)+0.5N(0.2,10
-2

I), N(0,10
-2

I)

Training Size (2
n

Steps)

R
M

S
 E

rr
o

r

2 4 6

0.2

0.22

0.24

(1,1/3), N(0,10
-2

I)

Training Size (2
n

Steps)

R
M

S
 E

rr
o

r

2 4 6

0.3

0.4

0.5

N(0,10
-2

I), N(0,10
-1

I)

Training Size (2
n

Steps)

R
M

S
 E

rr
o

r

2 4 6

0.2

0.25

0.3

0.35

N(0,10
-1

I), N(0,10
-2

I)

Training Size (2
n

Steps)

R
M

S
 E

rr
o
r

Summary Statistics

• Summary statistics for distributions:

• For certain Á, can reconstruct p from the 
summary!
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