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Abstract: Representing distributions over permutations can be a daunt-
ing task due to the fact that the number of permutations of n objects scales
factorially in n. One recent way that has been used to reduce storage com-
plexity has been to exploit probabilistic independence, but as we argue,
full independence assumptions impose strong sparsity constraints on dis-
tributions and are unsuitable for modeling rankings. We identify a novel
class of independence structures, called riffled independence, encompass-
ing a more expressive family of distributions while retaining many of the
properties necessary for performing efficient inference and reducing sample
complexity. In riffled independence, one draws two permutations indepen-
dently, then performs the riffle shuffle, common in card games, to combine
the two permutations to form a single permutation. Within the context of
ranking, riffled independence corresponds to ranking disjoint sets of objects
independently, then interleaving those rankings. In this paper, we provide
a formal introduction to riffled independence and propose an automated
method for discovering sets of items which are riffle independent from a
training set of rankings. We show that our clustering-like algorithms can
be used to discover meaningful latent coalitions from real preference ranking
datasets and to learn the structure of hierarchically decomposable models
based on riffled independence.
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1. Introduction

Ranked data appears ubiquitously in various statistics and machine learning ap-
plication domains. Rankings are useful, for example, in reasoning about prefer-
ence lists in surveys [21], search results in information retrieval applications [34],
and ballots in certain elections [7] and even the ordering of topics and paragraphs
within a document [4]. As with many challenging learning problems, one must
contend with an intractably large state space when dealing with rankings since
there are n! ways to rank n objects. In building a statistical model over rankings,
simple (yet flexible) models are therefore preferable because they are typically
more computationally tractable and less prone to overfitting.

A popular and highly successful approach for achieving such simplicity for
distributions involving large collections of interdependent variables has been to
exploit conditional independence structures (e.g., naive Bayes, graphical mod-
els). With ranking problems, independence-based relations are harder to exploit
due to the mutual exclusivity constraints which constrain any two items to map
to different ranks in a given ranking.

In this paper, we present a novel, relaxed notion of independence, called
riffled independence, in which one ranks disjoint subsets of items independently,
then interleaves the subset rankings to form a joint ranking of the item set.
Riffled independence appears naturally in many ranked datasets — as we show,
political coalitions in elections often lead to pronounced riffled independence
constraints in the vote histograms.

The following is a roadmap of our main contributions:1

1 This paper is an extended presentation of our previous papers [15], which was the first
introduction of riffled independence, and [17], which studied hierarchical models based on
riffle independent decompositions.
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• Section 2 gives a broad overview of several approaches for modeling prob-
ability distributions over permutations. In particular, we summarize the
results of [18], which studied probabilistic independence relations in dis-
tributions on permutations.

• In Section 3, we introduce our main contribution: an intuitive generaliza-
tion of the notion of independence for permutations, riffled independence,
based on interleaving independent rankings of subsets of items. We show
riffled independence to be a more appropriate notion of independence for
ranked data and exhibit evidence that riffle independence relations can
approximately hold in real ranked datasets. We also discuss the problem
of estimating parameters of a riffle independent model from ranking data.

• We use Section 4 to define a family of simple and interpretable distribu-
tions over rankings, called hierarchical riffle independent models, in which
subsets of items are iteratively interleaved into larger and larger subsets
in a recursive stagewise fashion.

• Section 5 tackles the problem of structure learning for our riffle indepen-
dent models. We propose a method for partitioning the item set so that
the subsets of the partition are as close to riffle independent as possible.
and apply our method to perform model selection from training data.

For the sake of brevity, proofs of theoretical results are omitted in this paper.
We refer interested readers to the supplementary material [19].

2. Distributions on rankings

A ranking σ = (σ(1), . . . , σ(n)) is a one-to-one association between n items and
ranks, where σ(j) = i means that the jth item is assigned rank i under σ. By
convention, we will think of low ranked items as being preferred over higher
ranked items (thus, ranking an item in first place means that it is the most
preferred out of all items). We will also refer to a ranking σ by its inverse,
Jσ−1(1), . . . , σ−1(n)K (called an ordering and denoted with double brackets in-
stead of parentheses), where σ−1(i) = j also means that the jth item is assigned
rank i under σ. The reason for using both notations is due to the fact that
certain concepts will be more intuitive to express using either the ranking or
ordering notation.

Example 1. As a running example, we will consider ranking a list of 6 items
consisting of fruits and vegetables enumerated below:

1. Corn (C) 2. P eas (P) 3. Lemon (L)

4. Orange (O) 5. F ig (F) 6. Grapes (G)

The ranking σ = (3, 1, 5, 6, 2, 4) means, for example, that Corn is ranked third,
Peas is ranked first, Lemon is ranked fifth, and so on. In ordering notation,
the same ranking is expressed as: σ = JP,F,C,G,L,OK. Finally we will use
σ(3) = σ(L) = 5 to denote the rank of the third item, Lemon.

Permutations and the symmetric group Rankings are similar to permu-
tations, which are 1-1 mappings from the set {1, . . . , n} into itself, the subtle
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difference being that rankings map between two different sets of size n. In this
paper, we will use the same notation for permutations and rankings, but use
permutations to refer to (1-1) functions which rearrange the ordering of the item
set or the ranks. If τ is a permutation of the set of ranks, then given a ranking
σ, one can rearrange the ranks by left-composing with τ . Thus, the ranking τσ
maps item i to rank τ(σ(i)). On the other hand, if τ is a permutation of the
item set, one can rearrange the item set by right-composing with τ−1. Thus, if
item j was relabeled as item i = τ(j), then σ(τ−1(i)) returns the rank of item
j with respect to the original item ordering. Finally, we note that the composi-
tion of any two permutations is itself a permutation, and the collection of all n!
permutations forms a group, commonly known as the symmetric group, or Sn.

We consider a random variable σ taking values in Sn with probability mass
function h(σ).2 The distribution corresponding to h(σ) can also be viewed
as a joint distribution over the n variables (σ(1), . . . ,σ(n)) (where σ(j) ∈
{1, . . . , n}), subject to mutual exclusivity constraints which stipulate that two
objects cannot simultaneously map to the same rank, or alternatively, that two
ranks cannot simultaneously be occupied by the same object (h(σ(i) = σ(j)) =
0 whenever i 6= j).

Example 2 (APA election data). As another running example, we analyze the
well known APA election dataset that was first used by [6] and has since been
studied in many works. The dataset is a collection of 5738 ballots from a 1980
presidential election of the American Psychological Association where members
rank ordered candidates by preference. The names of the five candidates that
year were (1) William Bevan, (2) Ira Iscoe, (3) Charles Kiesler, (4) Max Siegle,
and (5) Logan Wright [25].

Since there are five candidates, there are 5! = 120 rankings, and in Figure 1(a)
we plot the proportion of votes that each ranking received. Instead of concen-
trating at just a small set of rankings, the vote distribution in the APA dataset
is diffuse with every ranking receiving some number of votes.

For interpretability, we also visualize the matrix of first-order marginals in
which the (i, j) entry represents the number of voters who assigned rank i to
candidate j. Figure 1(b) represents the first-order matrix using grayscale levels
to represent numbers of voters. What can be seen is that overall, candidate 3
(C. Kiesler) received the highest number of votes for rank 1 (and incidentally,
won the election). The vote distribution gives us a story that goes far deeper
than simply telling us who the winner was, however. [6], for example, noticed
that candidate 3 also had a “hate” vote — a good number of voters placed him
in the last rank. We will let this story further unfold via a series of examples.

2.1. Dealing with factorial possibilities

The fact that there are factorially many rankings poses significant challenges for
learning and inference. First, there is no way to tractably represent arbitrary

2 In this paper, we use boldface σ to refer to the random variable and σ to refer to
realizations of the random variable.
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Fig 1. APA (American Psyochological Association) election data. (a) vote distribution: per-
centage of votes for each of 5! = 120 possible rankings — the mode of the distribution is
σ = (2, 3, 1, 5, 4). (b) Matrix of first order marginals: the (i, j)th entry reflects the number of
voters who ranked candidate j in the ith rank.

distributions over rankings for large n. Second, the naive algorithmic complexity
of common probabilistic operations is also intractable for such distributions.
Computing the marginal probability, h(σ(i) < σ(j)), that item i is preferred to
item j, for example, requires a summation over O((n − 2))!) elements. Finally,
even if storage and computation issues were resolved, one would still have sample
complexity issues to contend with — for nontrivial n, it is impractical to hope
that each of the n! possible rankings would appear even once in a training set
of rankings.

The quest for exploitable problem structure has led researchers to consider a
number of possibilities which we briefly summarize now.

Parametric models We will not be able to do justice to the sheer volume of
previous work on parametric ranking models. Parametric probabilistic models
over the space of rankings have a rich tradition in statistics, [9, 10, 13, 24, 25, 27,
29, 36], and to this day, researchers continue to expand upon this body of work.
For example, the well known Mallows model, which is often thought of as an
analog of the normal distribution for permutations, parameterizes a distribution
with a “mean” permutation and a precision/spread parameter.

The models proposed in this paper generalize many classical models from the
statistical ranking literature, allowing for more expressive distributions to be
captured. At the same time, our methods form a conceptual bridge to popular
models (i.e., graphical models) from machine learning which, rather than rely-
ing explicitly on a prespecified parametric form, simply work within a family
of distributions that are consistent with some set of conditional independence
assumptions [22].

Sparse methods Sparse methods for summarizing distributions range from
older ad-hoc approaches such as maintaining k-best hypotheses [30] to the recent
compressed sensing inspired approaches discussed in [8, 20]. Such approaches
assume that there are at most k permutations which own all (or almost all)
of the probability mass, where k scales either sublinearly or as a low degree
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polynomial in n. While sparse distributions have been successfully applied in
certain tracking domains, we argue that they are often less suitable in ranking
problems where it might be necessary to model indifference over a large subset
of objects. If one is approximately indifferent among a subset of k objects, then
there are at least k! rankings with nonzero probability mass. As an example,
one can see that the APA vote distribution (Figure 1(a)) is clearly not a sparse
distribution, with each ranking having received some nonzero number of votes.

Fourier-based (low-order) methods Another recent thread of research has
centered around Fourier-based methods which maintain a set of low-order sum-
mary statistics [6, 16, 23, 33]. The first-order summary, for example, stores a
marginal probability of the form h(σ(j) = i) for every pair (i, j) and thus re-
quires storing a matrix of only O(n2) numbers. In our fruits/vegetables example,
we might store the probability that Figs are ranked first, or the probability that
Peas is ranked last. See Figure 1(b) for a grayscale visualization of the first
order marginals for the APA dataset. More generally, one might store sth-
order marginals, which are marginal probabilities of s-tuples. The second-order
marginals, for example, take the form h(σ(k, ℓ) = (i, j)).

Low-order marginals turn out to be intimately tied to a generalized form
of Fourier analysis. Fourier transforms for functions on permutations have been
studied for some decades now [5, 6, 26, 31, 35]. In contrast with sparse methods,
Fourier methods handle diffuse distributions well but are not easily scalable
since, in general, one requires O(n2s) coefficients to exactly reconstruct sth-
order marginals, which becomes intractable for moderately large n.

2.2. Fully independent subsets of items

To scale to larger problems, [18] demonstrated that, by exploiting probabilis-
tic independence, one could dramatically improve the scalability of Fourier-
based methods, e.g., for tracking problems, since confusion in data association
only occurs over small independent subgroups of objects in many problems.
Probabilistic independence assumptions on the symmetric group can simply
be stated as follows. Let A be a p-subset of {1, . . . , n}, say, {1, . . . , p} and
let B be its complement ({p + 1, . . . , n}) with size q = n − p. We say that
σ(A) = (σ(1),σ(2), . . . ,σ(p)) and σ(B) = (σ(p + 1), . . . ,σ(n)) are indepen-
dent if:

h(σ = σ) = fA(σ(A) = σ(A)) · gB(σ(B) = σ(B)), for all σ ∈ Sn. (2.1)

Storing parameters for the above distribution requires keeping O(p! + q!) prob-
abilities instead of the much larger O(n!) required for general distributions. Of
course, O(p! + q!) can still be large, and typically, one decomposes the distribu-
tion recursively, storing factors exactly for small enough factors, or compressing
factors using Fourier coefficients (but with higher frequency terms than what
would be possible without independence assumptions). In order to exploit in-
dependence in the Fourier domain, [18] proposed algorithms for joining factors
and splitting distributions into independent components in the Fourier domain.
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Fig 2. Example first-order matrices with A = {1, 2, 3}, B = {4, 5, 6} fully independent,
where black means h(σ : σ(j) = i) = 0. In each case, there is some 3-subset A′ which A is
constrained to map to with probability one. Notice that, with respect to some rearranging of
the rows, independence imposes a block-diagonal structure on first-order matrices.

Despite its utility for many tracking problems, however, we argue that the in-
dependence assumption on permutations implies a rather restrictive constraint
on distributions, rendering independence highly unrealistic in ranking applica-
tions. In particular, using the mutual exclusivity property, it can be shown [18]
that, if σ(A) and σ(B) are independent, then A and B are not allowed to map
to the same ranks. That is, for some fixed p-subset A′ ⊂ {1, . . . , n}, σ(A) is a
permutation of elements in A′ and σ(B) is a permutation of its complement,
B′, with probability 1.

Example 3. Continuing with our vegetable/fruit example with n = 6, if the
vegetable and fruit rankings,

σ(A) = [σ(Corn), σ(Peas)], and σ(B) = [σ(Lemons), σ(Oranges), σ(Figs), σ(Grapes)],

are known to be independent. Then for A′ = {1, 2}, the vegetables occupy the
first and second ranks with probability one, and the fruits occupy ranks B′ =
{3, 4, 5, 6} with probability one, reflecting that vegetables are always preferred
over fruits according to this distribution.

[18] refers to this restrictive constraint as the first-order condition because
of the block structure imposed upon first-order marginals (see Figure 2). In our
ranking example, the first-order condition forces the probability of any vegetable
being in third place to be zero, even though both vegetables will, in general, have
nonzero marginal probability of being in second place, which seems unrealistic.

Example 4 (APA election data (continued)). Consider approximating the APA
vote distribution by a factorized distribution (as in Equation 2.1). In Figure 3,
we plot (in solid purple) the factored distribution which is closest to the true
distribution with respect to total variation distance. In our approximation, can-
didate 3 is constrained to be independent of the remaining four candidates and
maps to rank 1 with probability 1.

While capturing the fact that the “winner” of the election should be candidate
3, the fully factored distribution can be seen to be a poor approximation, as-
signing zero probability to most permutations even if all permutations received
a positive number of votes. Since the support of the true distribution is not
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Fig 3. Approximating the APA vote distribution by a factored distribution in which candidate
3 is independent of candidates {1, 2, 4, 5}. (a) in thick gray, the true distribution, in dotted
purple, the approximation. Notice that the factored distribution assigns zero probability to
most permutations. (b) matrix of approximate first order marginals.

contained within the support of the approximation, the Kullback-Leibler (KL)
divergence, DKL(htrue;happrox) is infinite.

In the next section, we overcome the restrictive first-order condition with the
more flexible notion of riffled independence.

3. Riffled independence: definitions and examples

The riffle (or dovetail) shuffle [2] is perhaps the most commonly used method of
card shuffling, in which one cuts a deck of n cards into two piles, A = {1, . . . , p}
and B = {p+1, . . . , n}, with size p and q = n−p, respectively, and successively
drops the cards, one by one, so that the two piles become interleaved into a single
deck again. Inspired by the riffle shuffle, we present a novel relaxation of the full
independence assumption, which we call riffled independence. Rankings that are
riffle independent are formed by independently selecting rankings for two disjoint
subsets of objects, then interleaving the two rankings using a riffle shuffle to form
a final ranking over all objects. Intuitively, riffled independence models complex
relationships within each set A and B while allowing correlations between the
sets to be modeled only through a constrained form of shuffling.

Example 5. Consider generating a ranking of vegetables and fruits. We might
first ‘cut the deck’ into two piles, a pile of vegetables (A) and a pile of fruits
(B), and in a first stage, independently decide how to rank each pile. For ex-
ample, within vegetables, we might decide that Peas are preferred to Corn:
JP,CK = JPeas, CornK. Similarly, within fruits, we might decide on the ranking:
JL,F,G,OK = JLemons, F igs,Grapes,OrangesK (Lemons preferred to Figs,
Figs preferred to Grapes, Grapes preferred to Oranges).

In the second stage of our model, the fruit and vegetable rankings are inter-
leaved to form a full preference ranking over all six items. For example, if the
interleaving is given by: JV eg, Fruit, Fruit, Fruit, V eg, FruitK, then the result-
ing full ranking is: σ = JPeas, Lemons, F igs,Grapes, Corn,OrangesK.
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3.1. Convolution based definition of riffled independence

There are two ways to define riffled independence, and, we will first provide a
definition using convolutions, a view inspired by our card shuffling intuitions.
Mathematically, shuffles are modeled as random walks on the symmetric group.
The ranking σ after a shuffle is generated from the ranking prior to that shuffle,
σ

′, by drawing a permutation, τ from an interleaving distribution m(τ ), and
setting σ = τσ

′ (the composition of the mapping τ with σ
′). Given the dis-

tribution h′ over σ
′, we can find the distribution h(σ) after the shuffle via the

formula: h(σ = σ) =
∑

σ′,τ :σ=τσ′ m(τ = τ)h′(σ′ = σ′). This operation which
combines the distributions m and h is commonly known as convolution:

Definition 6. Let m and h′ be probability distributions on Sn. The convolution
of the distributions is the function:

[m ∗ h′](σ = σ) ≡
∑

π∈Sn

m(τ = π) · h′(σ′ = π−1σ).

We use the ∗ symbol to denote the convolution operation. Note that ∗ is not in
general commutative (hence, m ∗ h′ 6= h′ ∗m).

Besides the riffle shuffle, there are a number of different shuffling strategies —
the pairwise shuffle, for example, simply selects two cards at random and swaps
them. The question then, is what are interleaving shuffling distributions m that
correspond to riffle shuffles? To answer this question, we use the distinguishing
property of the riffle shuffle, that, after cutting the deck into two piles of size
p and q = n − p, it must preserve the relative ranking relations within each
pile. Thus, if the ith card appears above the jth card in one of the piles, then
after shuffling, the ith card remains above the jth card. In our example, relative
rank preservation says that if Peas is preferred over Corn prior to shuffling, they
continue to be preferred over Corn after shuffling. Any allowable riffle shuffling
distribution must therefore assign zero probability to permutations which do
not preserve relative ranking relations. As it turns out, the set of permutations
which do preserve these relations have a simple description.

Definition 7 (Interleaving distributions). The (p, q)-interleavings are defined
as the following set:

Ωp,q ≡ {τ ∈ Sn : τ (1) < τ (2) < · · · < τ (p), and τ (p+ 1) < τ (p+ 2) < · · · < τ (n)}.

A distribution mp,q on Sn is called an interleaving distribution if it assigns
nonzero probability mass only to elements in Ωp,q.

The (p, q)-interleavings can be shown to preserve relative ranking relations
within each of the subsets A = {1, . . . , p} and B = {p + 1, . . . , n} upon multi-
plication:

Lemma 8. Let i, j ∈ A = {1, . . . , p} (or i, j ∈ B = {p + 1, . . . , n}) and let τ
be any (p, q)-interleaving in Ωp,q. Then i < j if and only if τ(i) < τ(j) (i.e.,
permutations in Ωp,q preserve relative ranking relations).
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Example 9. In our vegetable/fruits example, we have n = 6, p = 2 (two
vegetables, four fruits). The set of (2, 4)-interleavings is:

Ω2,4 =







(1, 2, 3, 4, 5, 6), (1, 3, 2, 4, 5, 6), (1, 4, 2, 3, 5, 6), (1, 5, 2, 3, 4, 6), (1, 6, 2, 3, 4, 5),
(2, 3, 1, 4, 5, 6), (2, 4, 1, 3, 5, 6), (2, 5, 1, 3, 4, 6), (2, 6, 1, 3, 4, 5), (3, 4, 1, 2, 5, 6),
(3, 5, 1, 2, 4, 5), (3, 6, 1, 2, 4, 5), (4, 5, 1, 2, 3, 6), (4, 6, 1, 2, 3, 5), (5, 6, 1, 2, 3, 4)







,

or written in ordering notation,

Ω2,4 =







JVVFFFFK, JVFVFFFK, JVFFVFFK, JVFFFVFK, JVFFFFVK,
JFVVFFFK, JFVFVFFK, JFVFFVFK, JFVFFFVK, JFFVVFFK,
JFFVFVFK, JFFVFFVK, JFFFVVFK, JFFFVFVK, JFFFFVVK







.

Note that the number of possible interleavings is |Ωp,q| =
(

n
p

)

=
(

n
q

)

=

6!/(2!4!) = 15. One possible riffle shuffling distribution on S6 might, for example,
assign uniform probability (munif

2,4 (τ = τ) = 1/15) to each permutation τ ∈ Ω2,4

and zero probability to everything else, reflecting indifference between vegetables
and fruits.

We now formally define our generalization of independence where a distribu-
tion which fully factors independently undergoes a single riffle shuffle.

Definition 10 (Riffled independence). The subsets A = {1, . . . , p} and B =
{p+ 1, . . . , n} are said to be riffle independent if for all σ ∈ Sn,

h(σ = σ) = mp,q ∗ (fA(σ(A) = σ(A)) · gB(σ(B) = σ(B))),

with respect to some interleaving distribution mp,q and distributions fA, gB,
respectively. We will notate the riffled independence relation as A ⊥m B, and
refer to fA, gB as relative ranking factors.

Notice that without the additional convolution, the definition of riffled inde-
pendence reduces to the fully independent case given by Equation 2.1.

Example 11. Consider drawing a ranking from a riffle independent model.
One starts with two piles of cards, A and B, stacked together in a deck. In
our fruits/vegetables setting, if we always prefer vegetables to fruits, then the
vegetables occupy positions {1, 2} and the fruits occupy positions {3, 4, 5, 6}.
In the first step, rankings of each pile are drawn independent. For example, we
might have the rankings: σ(Veg) = (2, 1) and σ(Fruit) = (4, 6, 5, 3), constituting
a draw from the fully independent model described in Section 2.2. In the second
stage, the deck of cards is cut and interleaved by an independently selected
element τ ∈ Ω2,4. For example, if:

τ = (2, 3, 1, 4, 5, 6) = JFruit, V eg, V eg, Fruit, F ruit, F ruitK,

then the joint ranking is:

τ (σ(V eg), σ(Fruit)) = (2, 3, 1, 4, 5, 6)(2, 1, 4, 6, 5, 3) = (3, 2, 4, 6, 5, 1),

= JGrapes,Peas,Corn, Lemon, F ig,OrangeK.
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3.2. Alternative definition of riffled independence

It is possible to rewrite the definition of riffled independence so that it does not
involve a convolution. We first define functions which map a given full ranking
to relative rankings and interleavings for A and B.

Definition 12.

• (Absolute ranks): Given a ranking σ ∈ Sn, and a subset A ⊂ {1, . . . , n},
σ(A) denotes the absolute ranks of items in A.

• (Relative ranking map): Let φA(σ) denote the ranks of items in A relative
to the set A. For example, in the ranking σ = JP,L,F,G,C,OK, the
relative ranks of the vegetables is φA(σ) = JP,CK = JPeas, CornK. Thus,
while corn is ranked fifth in σ, it is ranked second in φA(σ). Similarly,
the relative ranks of the fruits is φB(σ) = JL,F,G,OK = JLemons, F igs,
Grapes,OrangesK.

• (Interleaving map): Likewise, let τA,B(σ) denote the way in which the sets
A and B are interleaved by σ. For example, using the same σ as above, the
interleaving of vegetables and fruits is τA,B(σ) = JV eg, Fruit, Fruit, Fruit,
V eg, FruitK. In ranking notation (as opposed to ordering notation), τA,B

can be written as (sort(σ(A)), sort(σ(B))). Note that for every possible
interleaving, τ ∈ Ωp,q there are exactly p!×q! distinct permutations which
are associated to τ by the interleaving map.

Using the above maps, we now provide an algebraic expression for how any
permutation σ can be uniquely decomposed into an interleaving composed with
relative rankings of A and B, which have been “stacked” into one deck.

Lemma 13. Let A = {1, . . . , p}, and B = {p+ 1, . . . , n}. Any ranking σ ∈ Sn

can be decomposed uniquely as an interleaving τ ∈ Ωp,q composed with a ranking
of the form (πp, πq + p), where πp ∈ Sp, πq ∈ Sq, and πq + p means that the
number p is added to every rank in πq. Specifically, σ = τ(πp, πq + p) with
τ = τA,B(σ), πp = φA(σ), and πq = φB(σ).

Lemma 13 shows that one can think of a triplet (τ ∈ Ωp,q, σp ∈ Sp, σq ∈ Sq)
as the coordinates which uniquely specify any ranking of items in A∪B. Using
the decomposition, we now state an equivalent, perhaps more intuitive definition
of riffled independence in terms of relative ranking and interleaving maps.

Definition 14. Sets A and B are said to be riffle independent if and only if,
for every σ ∈ Sn, the joint distribution h factors as:

h(σ = σ) = m(τ = τA,B(σ)) · fA(σ(A) = φA(σ)) · gB(σ(B) = φB(σ)). (3.1)

Proposition 15. Definitions 10 and 14 are equivalent.

Discussion We have presented two ways of thinking about riffled indepen-
dence. Our first formulation, in terms of convolution, is motivated by the con-
nections between riffled independence and card shuffling theory. Our second
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formulation on the other hand, shows the concept of riffled independence to be
remarkably simple — that the probability of a single ranking can be computed
without summing over all rankings (required in convolution) — a fact which
may not have been obvious from Definition 10.

Special cases There are a number of special case distributions captured by
the riffled independence model that are useful for intuition. We discuss these
extreme cases in the following list.

• (Uniform and delta distributions): Setting the interleaving distribution
and both relative ranking factors to be uniform distributions yields the
uniform distribution over all full rankings. Similarly, setting the same dis-
tributions to be delta distributions (which assign zero probability to all
rankings but one) always yields a delta distribution.
It is interesting to note that while A and B are always fully independent
under a delta distribution, they are never independent under a uniform
distribution. However, both uniform and delta distributions factor riffle
independently with respect to any partitioning of the item set. Thus, not
only is A = {1, . . . , p} riffle independent B = {p + 1, . . . , n}, but in fact,
any set A is riffle independent of its complement.

• (Uniform interleaving distributions): Setting the interleaving distribution
to be uniform reflects complete indifference between the sets A and B,
even if f and g encode complex preferences within each set alone.

• (Delta interleaving distributions): Setting the interleaving distribution,
mp,q, to be a delta distribution on any of the (p, q)-interleavings in Ωp,q

recovers the definition of ordinary probabilistic independence, and thus
riffled independence is a strict generalization thereof (see Figure 2). Just
as in the full independence regime, where the distributions f and g are
marginal distributions of absolute rankings of A and B, in the riffled in-
dependence regime, f and g can be thought of as marginal distributions
of the relative rankings of item sets A and B.

Example 16 (APA election data (continued)). Like the independence assump-
tions commonly used in naive Bayes models, we would rarely expect riffled
independence to exactly hold in real data. Instead, it is more appropriate to
view riffled independence assumptions as a form of model bias that ensures
learnability for small sample sizes, which as we have indicated, is almost always
the case for distributions over rankings.

Can we ever expect riffled independence to be approximately manifested in
a real dataset? In Figure 4(a), we plot (dotted red) a riffle independent approx-
imation to the true APA vote distribution (thick gray) which is optimal with
respect to KL-divergence (we will explain how to obtain the approximation in
the remainder of the paper). The approximation in Figure 4(a) is obtained by
assuming that the candidate set {1, 3, 4, 5} is riffle independent of {2}, and as
can be seen, is quite accurate compared to the truth. Figure 4(b) exhibits the
first order marginals of the approximating distribution (see Figure 1(b)). We
will discuss the interpretation of the result further in Section 4.
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Fig 4. Approximating the APA vote distribution by riffle independent distributions. (a) ap-
proximate distribution when candidate 2 is riffle independent of remaining candidates; (b) is
the corresponding matrix of first order marginals.

3.3. Computation

We briefly introduce two related computational issues related to riffled indepen-
dence — the problems of (1) estimating model parameters, and (2), computing
marginals of a joint distribution which we know factors riffle independently.

Parameter estimation Given a set of i.i.d. training examples, σ(1), . . . , σ(m),
we are interested in the problem of estimating the parameter distributions mp,q,
fA, and gB. In this section we assume a known structure (that the partitioning
of the item set into subsets A and B is known and fixed). Since our variables
are discrete, computing the maximum likelihood parameter estimates consists
of forming counts of the number of training examples consistent with a given
interleaving or relative ranking. Thus, the MLE parameters in our problem are
simply given by the following formulas:

mMLE
p,q (τ) ∝

m
∑

i=1

1

[

τ = τA,B(σ(i))
]

,

fMLE
A (σA) ∝

m
∑

i=1

1

[

σA = φA(σ(i))
]

, gMLE
B (σB) ∝

m
∑

i=1

1

[

σB = φB(σ(i))
]

.

Efficient computation of marginals Another useful operation is that of
computing marginal probabilities of a distribution (for the purposes of visual-
ization, for example). We now state a simple result that shows that given the
first-order marginal probabilities of each factor in a riffle independent distribu-
tion h, it is possible to compute the first-order marginal probabilities of h.

Theorem 3.1. Let A and B be riffle independent with respect to distribution
h. If M is the matrix of first-order marginals of the interleaving distribution
mp,q and F and G the first-order marginals of relative ranking distributions fA
and gB, respectively, then the first order matrix of marginals of h is given by
H = M · (F ⊕G), where ⊕ represents the direct sum operation and · represents
ordinary matrix multiplication.
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We note that one way to establish Theorem 3.1 is to use the convolution
theorem from Fourier analysis (see [15]) to convert the convolutions of distri-
butions to matrix products of Fourier terms. Using the convolution theorem,
the same result can also be generalized to higher order terms by replacing the
word “first-order” by “kth-order” everywhere. We use the result of Theorem 3.1
to produce first-order marginals for each of the datasets in Section 6.

4. Hierarchical riffle independent decompositions

Thus far, we have focused exclusively on understanding riffle independent mod-
els with a single binary partitioning of the full item set. In this section we
explore a natural model simplification which comes from the simple observation
that, since the relative ranking distributions fA and gB are again distributions
over rankings, the sets A and B can further be decomposed into riffle indepen-
dent subsets. We call such models hierarchical riffle independent decompositions.
Continuing with our running example, one can imagine that the fruits are fur-
ther partitioned into two sets, a set consisting of citrus fruits ((L) Lemons and
(O) Oranges) and a set consisting of mediterranean fruits ((F) Figs and (G)
Grapes). To generate a full ranking, one first draws rankings of the citrus and
mediterranean fruits independently (JL,OK and JG,FK, for example). Secondly,
the two sets are interleaved to form a ranking of all fruits (JG,L,O,FK). Fi-
nally, a ranking of the vegetables is drawn (JP,CK) and interleaved with the fruit
rankings to form a full joint ranking: JP,G,L,O,F,CK. Notationally, we can ex-
press the hierarchical decomposition as {P,C} ⊥m1 ({L,O} ⊥m2 {F,G}). We
can also visualize hierarchies using trees (see Figure 5(a) for our example). The
subsets of items which appear as leaves in the tree will be referred to as leaf sets.

A natural question to ask is: if we used a different hierarchy with the same leaf
sets, would we capture the same distributions? For example, does a distribution
which decomposes according to the tree in Figure 5(b) also decompose according
to the tree in Figure 5(a)? The answer, in general, is no, due to the fact that
distinct hierarchies impose different sets of independence assumptions, and as
a result, different structures can be well or badly suited to modeling a given
dataset. Consequently, it is important to use the “correct” structure if possible.

Shared independence structure It is interesting to note, however, that
while the two structures in Figures 5(a) and 5(b) encode distinct families of
distributions, it is possible to identify a set of independence assumptions com-
mon to both structures. In particular since both structures have the same leaf
sets, any distributions consistent with either of the two hierarchies must also
be consistent with what we call a 3-way decomposition. We define a d-way de-
composition to be a distribution with a single level of hierarchy, but instead of
partitioning the entire item set into just two subsets, one partitions into d sub-
sets, then interleaves the relative rankings of each of the d subsets together to
form a joint ranking of items. Any distribution consistent with either Figure 5(b)
or 5(a) must consequently also be consistent with the structure of Figure 5(c).
More generally, we have:
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(a) Example of hierarchical riffled indepen-
dence structure on S6
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(d) Hierarchical decomposition into single-
ton subset, where each leaf set consists of a
single item (we will also refer to this partic-
ular type of tree as a 1-thin chain)

Fig 5. Examples of distinct hierarchical riffle independent structures.

Proposition 17. If h is a hierarchical riffle independent model with d leaf sets,
then h can also be written as a d-way decomposition.

In general, knowing the hierarchical decomposition of a model is more de-
sirable than knowing its d-way decomposition which may require many more
parameters

(

O( n!
∏

i di!
),where i indexes over leaf sets

)

. For example, the n-way

decomposition requires O(n!) parameters and captures every distribution over
permutations.

Thin chain models There is a class of particularly simple hierarchical models
which we will refer to as k-thin chain models. By a k-thin chain model, we refer
to a hierarchical structure in which the size of the smaller set at each split
in the hierarchy is fixed to be a constant and can therefore be expressed as:
(A1 ⊥m (A2 ⊥m (A3 ⊥m . . . ))), |Ai| = k, for all i.

See Figure 5(d) for an example of 1-thin chain. We view thin chains as being
somewhat analogous to thin junction tree models [1], in which cliques are never
allowed to have more than k variables. When k ∼ O(1), for example, the number
of model parameters scales polynomially in n. To draw rankings from a thin
chain model, one sequentially inserts items independently, one group of size k
at a time, into the full ranking.

Example 18 (APA election data (continued)). The APA, as described by [7],
is divided into “academicians and clinicians who are on uneasy terms”. In 1980,
candidates {1, 3} (W. Bevan and C. Kiesler who were research psychologists)
and {4, 5} (M.Siegle and L. Wright, who were clinical psychologists) fell on op-
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{II}{WB, CK, MS, LW}
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{

{MS, LWMS, LW}}
1,3 4,5

2

Research Clinical

Community

Fig 6. Hierarchical structure learned from APA data.

posite ends of this political spectrum with candidate 2 (I. Iscoe) being somewhat
independent. Diaconis conjectured that voters choose one group over the other,
and then choose within. We are now able to verify Diaconis’ conjecture using our
riffled independence framework. After removing candidate 2 from the distribu-
tion, we perform a search within candidates {1, 3, 4, 5} to again find nearly riffle
independent subsets. We find that A = {1, 3} and B = {4, 5} are very nearly
riffle independent (with respect to KL divergence) and thus are able to verify
that candidate sets {2}, {1, 3}, {4, 5} are indeed grouped in a riffle independent
sense in the APA data. We remark that in a later work, [25] identified candidate
2 (I. Iscoe) as belonging to yet a third group of psychologists called community
psychologists. The hierarchical structure that best describes the APA data is
shown in Figure 6.

5. Structure discovery

Since different hierarchies impose different independence assumptions, we would
like to find the structure that is optimally suited to modeling a given ranking
dataset. On some datasets, a natural hierarchy might be available — for exam-
ple, if one were familiar with the typical politics of APA elections, then it may
have been possible to “guess” the optimal hierarchy. However, for general ranked
data, it is not always obvious what kinds of groupings riffled independence will
lead to, particularly for large n. Should fruits really be riffle independent of
vegetables? Or are green foods riffle independent of red foods?

Over the next two sections, we address the problem of automatically discov-
ering hierarchical structures from training data. Key among our observations is
the fact that while item ranks cannot be independent due to mutual exclusivity,
relative ranks between sets of items are not subject to the same constraints.
More than simply being a ‘clustering’ algorithm, however, our procedure can be
thought of as a structure learning algorithm, like those from the graphical mod-
els literature [22], which find the optimal (riffled) independence decomposition
of a distribution.

This section addresses how one might find the optimal structure if there is
only one level of partitioning and two leaf sets, A, B. Alternatively, we want to
find the topmost partitioning of the tree. In Section 5.5, we use this base case
as part of a top-down approach for learning a hierarchy.
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5.1. Problem statement

Given a training set of rankings, σ(1), σ(2), . . . , σ(m) ∼ h, drawn i.i.d. from a
distribution in which a subset of items, A ⊂ {1, . . . , n}, is riffle independent
of its complement, B, the problem which we address in this section is that of
automatically determining the sets A and B. If h does not exactly factor riffle
independently, then we would like to find the riffle independent approximation
which is closest to h in some sense. Formally, we would like to solve the problem:

argmin
A

min
m,f,g

DKL(ĥ(·) ||m(τA,B(·))f(φA(·))g(φB(·))), (5.1)

where ĥ is the empirical distribution of training examples and DKL is the
Kullback-Leibler divergence measure. Equation 5.1 is a seemingly reasonable
objective since it can also be interpreted as maximizing the likelihood of the
training data. In the limit of infinite data, Equation 5.1 can be shown via the
Gibbs inequality to attain its minimum, zero, at the subsets A and B, if and
only if the sets A and B are truly riffle independent of each other.

For small problems, one can actually solve Problem 5.1 using a single com-
puter by evaluating the approximation quality of each subset A and taking the
minimum, which was the approach taken in Example 18. However, for larger
problems, one runs into time and sample complexity problems since optimiz-
ing the globally defined objective function (Equation 5.1) requires relearning all
model parameters (m, fA, and gB) for each of the exponentially many subsets
of {1, . . . , n}. In fact, for large sets A and B, it is rare that one would have
enough samples to estimate the relative ranking parameters fA and gB without
already having discovered the hierarchical riffle independent decompositions of
A and B.

We next propose a low-order proxy objective function, reminiscent of cluster-
ing, which we will use instead of Equation 5.1. As we show, our new objective
will be more tractable to compute and have lower sample complexity for es-
timation. The idea of using a low order proxy objective is similar to an idea
which was recently introduced in [32], which determines optimally thin separa-
tors with respect to the Bethe free energy approximation (of the entropy) rather
than a typical log-likelihood objective. The resulting sample complexity analysis
is based on the mutual information sample complexity bounds derived in [14],
which was also used in [3] for developing a structure learning algorithm for thin
junction trees with provably polynomial sample complexity.

5.2. Proposed objective function

The approach we take is to minimize a different measure that exploits the obser-
vation that absolute ranks of items in A are fully independent of relative ranks
of items in B, and vice versa (which we prove in Proposition 19). With our veg-
etables and fruits, for example, knowing that Figs is ranked first among all six
items (the absolute rank of a fruit) should give no information about whether
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Corn is preferred to Peas (the relative rank of vegetables). More formally, given
a subset A = {a1, . . . , aℓ}, recall that σ(A) denotes the vector of (absolute)
ranks assigned to items in A by σ (thus, σ(A) = (σ(a1),σ(a2), . . . ,σ(aℓ))). We
propose to minimize an alternative objective function:

F(A) ≡ I(σ(A) ; φB(σ)) + I(σ(B) ; φA(σ)), (5.2)

where I denotes the mutual information (defined between two variables X1 and
X2 by I(X1;X2) ≡ DKL(P (X1,X2)||P (X1)P (X2)).

The function F does not have the same likelihood interpretation as the ob-
jective function of Equation 5.1. However, it can be thought of as a composite
likelihood of two models, one in which the relative rankings of A are independent
of absolute rankings of B, and one in which the relative rankings of B are inde-
pendent of absolute rankings of A. With respect to distributions which satisfy (or
approximately satisfy) both models (i.e., the riffle independent distributions),
minimizing F is equivalent to (or approximately equivalent to) maximizing the
log likelihood of the data. Furthermore, we can show that F is guaranteed to
detect riffled independence:

Proposition 19. F(A) = 0 is a necessary and sufficient criterion for a subset
A ⊂ {1, . . . , n} to be riffle independent of its complement, B.

As with Equation 5.1, optimizing F is still intractable for large n. However, F
motivates a natural proxy, in which we replace the mutual informations defined
over all n variables by a sum of mutual informations defined over just three
variables at a time.

Definition 20 (Tripletwise mutual informations). Given any triplet of dis-
tinct items, (i, j, k), we define the tripletwise mutual information term, Ii;j,k ≡
I(σ(i) ; σ(j) < σ(k)), which can be computed as follows:

I(σ(i) ; σ(j) < σ(k)) =
∑

σ(i)

∑

σ(j)<σ(k)

h(σ(i), σ(j) < σ(k)) log
h(σ(i), σ(j) < σ(k))

h(σ(i))h(σ(j) < σ(k))
,

where the inside summation runs over two values, true/false, for the binary
variable σ(j) < σ(k).

To evaluate how riffle independent two subsets A and B are, we want to
examine the triplets that straddle the two sets.

Definition 21 (Internal and Cross triplets). We define Ωcross
A,B to be the set of

triplets which “cross” from set A to set B: Ωcross
A,B ≡ {(i; j, k) : i ∈ A, j, k ∈ B}.

Ωcross
B,A is similarly defined. We also define Ωint

A to be the set of triplets that are
internal to A: Ωint

A ≡ {(i; j, k) : i, j, k ∈ A}, and again, Ωint
B is similarly defined.

Our proxy objective function can be written as the sum of the mutual infor-
mation evaluated over all of the crossing triplets:

F̃(A) ≡
∑

(i,j,k)∈Ωcross
A,B

Ii;j,k +
∑

(i,j,k)∈Ωcross
B,A

Ii;j,k. (5.3)
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A
B

Internal Triplet

Cross Triplet

Fig 7. Above is a graphical depiction of the problem of finding riffle independent subsets. A
triangle with vertices (i, j, k) represents the term Ii;j,k. Since the Ii;j,k are not invariant with
respect to a permutation of the indices i, j, and k, the triangles are directed, and we therefore
use double bars represent the nodes j, k for the term Ii;j,k. Note that if the tripletwise terms
were instead replaced by edgewise terms, the problem would simply be a standard clustering
problem.

F̃ can be viewed as a low order version of F , involving mutual information
computations over triplets of variables at a time instead of n-tuples. The mutual
information Ii;j,k, for example, reflects how much the rank of a vegetable (i) tells
us about how two fruits (j, k) compare. If A and B are riffle independent, then
we know that Ii;j,k = 0 for any (i, j, k) such that i ∈ A, j, k ∈ B (and similarly
for any (i, j, k)) such that i ∈ B, j, k ∈ A. Given that fruits and vegetables
are riffle independent sets, knowing that Grapes is preferred to Figs should give
no information about the absolute rank of Corn, and therefore ICorn;Grapes,F igs

should be zero.
The objective F̃ is somewhat reminiscent of typical graphcut and clustering

objectives. Instead of partitioning a set of nodes based on sums of pairwise simi-
larities, we partition based on sums of tripletwise affinities. We show a graphical
depiction of the problem in Figure 7, where cross triplets in (Ωcross

A,B , Ωcross
B,A ) have

low weight and internal triplets in (Ωint
A , Ωint

B ) have high weight. The objective
is to find a partition such that the sum over cross triplets is low. In fact, the
problem of optimizing F̃ can be seen as an instance of the weighted, directed
hypergraph cut problem [11]. Note that the word directed is significant for us,
because, unlike typical clustering problems, our triplets are not symmetric (for
example, Ii;jk 6= Ij;ik), resulting in a nonstandard and poorly understood opti-
mization problem.

5.3. Low-order detectability assumptions

When does F̃ detect riffled independence? It is not difficult to see, for example,
that F̃ = 0 is a necessary condition for riffled independence, since A ⊥m B
implies Ia;b,b′ = 0. We have:

Proposition 22. If A and B are riffle independent sets, then F̃(A) = 0.
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However, the converse of Proposition 22 is not true in full generality with-
out accounting for dependencies that involve larger subsets of variables. Just
as the pairwise independence assumptions that are commonly used for random-
ized algorithms [28]3 do not imply full independence between two sets of vari-
ables, there exist distributions which “look” riffle independent from tripletwise
marginals but do not factor upon examining higher-order terms. Nonetheless,
in most practical scenarios, we expect F̃ = 0 to imply riffled independence.

5.4. Estimating the objective from samples

We have so far argued that F̃ is a reasonable function for finding riffle inde-
pendent subsets. However, since we only have access to samples rather than the
true distribution h itself, it will only be possible to compute an approximation
to the objective F̃ . In particular, for every triplet of items, (i, j, k), we must
compute an estimate of the mutual information Ii;j,k from i.i.d. samples drawn
from h, and so the question is: how many samples will we need in order for the
approximate version of F̃ to remain a reasonable objective function?

In the following, we denote the estimated value of Ii;j,k by Îi;j,k. For each
triplet, we use a regularized procedure due to [14] to estimate mutual informa-
tion and adapt his sample complexity bound to our problem:

Lemma 23. For any fixed triplet (i, j, k), the mutual information Ii;j,k can
be estimated to within an accuracy of ∆ with probability at least 1 − γ using

S(∆, γ) ≡ O
(

n2

∆2 log
2 n

∆ log n
γ

)

i.i.d. samples.

The approximate objective function is therefore:

F̂(A) ≡
∑

(i,j,k)∈Ωcross
A,B

Îi;j,k +
∑

(i,j,k)∈Ωcross
B,A

Îi;j,k.

What we want to show now is that, if there exists a unique way to partition
{1, . . . , n} into riffle independent sets, then given enough training examples,
our approximation F̂ uniquely singles out the correct partition as its minimum
with high probability. A class of riffle independent distributions for which the
uniqueness requirement is satisfied consists of the distributions for which A and
B are strongly connected according to the following definition.

Definition 24. A subset A ⊂ {1, . . . , n} is called ǫ-third-order strongly con-
nected (we will often just say strongly connected) if, for every triplet i, j, k ∈ A
with i, j, k distinct, we have Ii;j,k > ǫ.

If A and B are riffle independent with both sets strongly connected, then
we can ensure that riffled independence is detectable and that the partition is
unique. We have the following probabilistic guarantee.

3 A pairwise independent family of random variables is one in which any two members
are marginally independent. Subsets with larger than two members may not necessarily factor
independently, however.
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Theorem 25. Let A and B be ǫ-third order strongly connected riffle independent

sets, and suppose |A| = k. Given S(∆, ǫ) ≡ O
(

n4

ǫ2
log2 n

ǫ
log n

γ

)

i.i.d. samples,

the minimum of F̂ is achieved at exactly the subsets A and B with probability
at least 1− γ.

We remark that the strong connectivity assumptions used in Theorem 25 are
stronger than necessary — and with respect to certain interleaving distribu-
tions, it can even be the case that the estimated objective function singles out
the correct partition when all of internal triplets belonging to A and B have
zero mutual information. Moreover, in some cases, there are multiple valid par-
titionings of the item set. For example the uniform distribution is a distribution
in which every subset A ⊂ {1, . . . , n} is riffle independent of its complement.
In such cases, multiple solutions are equally good when evaluated under F̃ , but
not its sample approximation, F̂ .

5.5. Structure discovery algorithms

Having now designed a function that can be tractably estimated, we turn to the
problem of learning the hierarchical structure of a distribution from training
examples. Instead of directly optimizing an objective in the space of possible
hierarchies, we take a top-down approach in which the item sets are recursively
partitioned by optimizing F̂ until some stopping criterion is met (for example,
when the leaf sets are smaller than some k).

Exhaustive optimization Optimizing the function F̂ requires searching
through the collection of subsets of size |A| = k, which, when performed exhaus-
tively, requires O

((

n
k

))

time. An exhaustive approach thus runs in exponential
time, for example, when k ∼ O(n).

However, when the size of k is known and small (k ∼ O(1)), the optimal
partitioning of an item set can be found in polynomial time by exhaustively
evaluating F̂ over all k-subsets. Moreover, the sample complexity in the small-k
regime is less than that of Theorem 25 which makes no assumptions on the size
of k:

Corollary 26. Under the conditions of Theorem 25, one needs at most S(∆, ǫ) ≡

O
(

n2

ǫ2
log2 n

ǫ
log n

γ

)

samples to recover the exact riffle independent partitioning
with probability 1− γ.

When k is small, we can therefore use exhaustive optimization to learn the
structure of k-thin chain models (Section 4) in polynomial time. The structure
learning problem for thin chains is to discover how the items are partitioned
into groups, which group is inserted first, which group is inserted second, and so
on. To learn the structure of a thin chain, we can use exhaustive optimization
to learn the topmost partitioning of the item set, then recursively learn a thin
chain model for the items in the larger subset.
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AnchorsPartition

input : training set {σ(1) , . . . , σ(m)}, k ≡ |A|
output: Riffle independent partitioning of item set, (Abest, Bbest)

Fix a1 to be any item ;
forall a2 ∈ {1, . . . , n}, a1 6= a2 do

Estimate Îx;a1,a2 for all x 6= a1, a2;

Îk ← kth smallest item in {Îx;a1,a2 ;x 6= a1, a2} ;

Aa1,a2 ← {x : Îx;a1,a2 ≤ Îk} ;
end

Abest ← argmina1,a2 F̂(Aa1,a2);
Bbest ← {1, . . . , n}\Abest ;
return [Abest, Bbest];

Algorithm 1: Pseudocode for partitioning using the Anchors method

Handling arbitrary partitions using anchors When k is large, or even
unknown, F̂ cannot be optimized using exhaustive methods. Instead, we propose
a simple algorithm for finding A and B based on the following observation. If
an oracle could identify any two elements of the set A, say, a1, a2, in advance,
then the quantity Ix;a1,a2 = I(x; a1 < a2) indicates whether the item x belongs
to A or B since Ix;a1,a2 is nonzero in the first case, and zero in the second case.

For finite training sets, when I is only known approximately, one can sort
the set {Ix;a1,a2 ; x 6= a1, a2} and if k is known, take the k items closest to zero
to be the set B (when k is unknown, one can use a threshold to infer k). Since
we compare all items against a1, a2, we refer to a1 and a2 as “anchors”.

Of course a1, a2 are not known in advance, but by fixing a1 to be an arbitrary
item, one can repeat the above method for all n − 1 settings of a2 to produce
a collection of O(n2) candidate partitions. Each partition is then scored using
the approximate objective F̂ , and a final partition is selected as the minimum
over the candidates. See Algorithm 1. In cases when k is not known, we evaluate
partitions for all possible settings of k using F̂ .

Since the Anchors method does not require searching over subsets, it can be
significantly faster than an exhaustive optimization of F̂ . Moreover, by assuming
ǫ-third order strong connectivity as in the previous section, one can use similar
arguments to derive sample complexity bounds.

Corollary 27 (of Theorem 25). Let A and B be ǫ-third order strongly connected
riffle independent sets, and suppose |A| = k. Given S(∆, ǫ) i.i.d. samples, the
output of the Anchors algorithm is exactly [A,B] with probability 1 − γ. In
particular, the Anchors estimator is consistent.

6. Experiments

We have analyzed the APA data extensively throughout the paper. In this sec-
tion, we demonstrate our algorithms on simulated data as well as other real
datasets.
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6.1. Simulated data

We first apply our methods to synthetic data to show that, given enough sam-
ples, our algorithms do effectively recover the optimal hierarchical structures
which generated the original datasets. For various settings of n, we simulated
data drawn jointly from a k-thin chain model (for k = 4) with a random param-
eter setting for each structure and applied our exact method for learning thin
chains to each sample. First, we investigated the effect of varying sample size on
the proportion of trials (out of fifty) for which our algorithms were able to (a)
recover the underlying tree structure exactly, (b) recover the topmost partition
correctly, or (c) recover all leaf sets correctly (but possibly out of order). Fig-
ure 8(a) shows the result for n = 16. Figure 8(b), shows, as a function of n, the
number of samples that were required in the same experiments to (a) exactly
recover the underlying structure or (b) recover the correct leaf sets, for at least
90% of the trials. What we can observe from the plots is that, given enough
samples, reliable structure recovery is indeed possible. It is also interesting to
note that recovery of the correct leaf sets can be done with much fewer samples
than are required for recovering the full hierarchical structure of the model.
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After learning a structure for each sample, we learned model parameters and
evaluated the log-likelihood of each model on 200 test examples drawn from the
true distributions. In Figure 8(c), we compare log-likelihoods when (a) the true
structure is given, (b) a k-thin chain is learned with known k, and (c) when we
use a randomly generated 1-chain structure. As expected, knowing the structure
results in the best performance, and the 1-chain is overconstrained. However,
our structure learning algorithm is eventually able to match the performance of
the true structure given enough samples. It is also interesting to note that the
jump in performance at the halfway point in the plot coincides with the jump
in the success rate of discovering all leaf sets correctly — we conjecture that
performance is sometimes less sensitive to the hierarchy, as long as the leaf sets
have been correctly discovered.

To test the Anchors algorithm, we ran the same simulation using Algorithm 1
on data drawn from hierarchical models with no fixed k. We generated roughly
balanced structures, meaning that item sets were recursively partitioned into
(almost) equally sized subsets at each level of the hierarchy. From Figure 8(d), we
see that the Anchors algorithm can also discover the true structure given enough
samples. Interestingly, the difference in sample complexity for discovering leaf
sets versus discovering the full tree is not nearly as pronounced as in Figure 8(a).
We believe that this is due to the fact that the balanced trees have less depth
than the thin chains, leading to fewer opportunities for our greedy top-down
approach to commit errors.

6.2. Data analysis: Sushi preference data

We now turn to analyzing real datasets. For our first analysis, we examine a sushi
preference ranking dataset [21] consisting of 5000 full rankings of ten types of
sushi. The items are enumerated in Figure 9. Note that, compared to the APA
election data, the sushi dataset has twice as many items, but fewer examples.

Structure learning on the sushi dataset Figure 12 shows the hierarchical
structure that we learn using the entire sushi dataset. Since the sushi are not
prepartitioned into distinct coalitions, it is somewhat more difficult than with,
say, the APA data, to interpret whether the estimated structure makes sense.
However, parts of the tree certainly seem like reasonable groupings. For example,
all of the tuna related sushi types have been clustered together. Tamago and
kappa-maki (egg and cucumber rolls) are “safer”, typically more boring choices,
while uni and sake (sea urchin and salmon roe) are more daring. Anago (sea

1. ebi (shrimp) 2. anago (sea eel) 3. maguro (tuna)
4. ika (squid) 5. uni (sea urchin) 6. sake (salmon roe)

7. tamago (egg) 8. toro (fatty tuna) 9. tekka-maki (tuna roll)
10. kappa-maki (cucumber roll)

Fig 9. List of sushi types in the [21] dataset.
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eel), is the odd man out in the estimated hierarchy, being partitioned away from
the remaining items at the top of the tree.

To understand the behavior of our algorithm with smaller sample sizes, we
looked for features of the tree from Figure 12 which remained stable even when
learning with smaller sample sizes. Figure 11 summarizes the results of our
bootstrap analysis for the sushi dataset, in which we resample from the original
training set 200 times at each of different sample sizes and plot the proportion
of learned hierarchies which, (a) recover ‘sea eel’ as the topmost partition, (b)
recover all leaf sets correctly, (c), recover the entire tree correctly, (d) recover
the tuna-related sushi leaf set, (e) recover the {tamago, kappa-maki} leaf set,
and (f) recover the {uni, sake} leaf set.

6.3. Data analysis: Irish election data

We next applied our algorithms to a larger Irish House of Parliament (Dáil
Éireann) election dataset from the Meath constituency in Ireland. The Dáil
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{3,7,8,9,10} {1}
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7,8,9,10} {1}

}

}

{7,10}

}}{

{3,8,9}

anago
(sea eel)

ika
(squid)

uni, sake
(sea urchin, salmoe roe)

ebi
(shrimp)

maguro, toro, tekka-maki
(tuna, fatty tuna, tuna roll)

tamago, kappa-maki
(egg, cucumber roll)

Fig 12. Learned hierarchy for sushi dataset using all 5000 rankings.

Candidate Party
1 Brady, J. Fianna Fáil
2 Bruton, J. Fine Gael
3 Colwell, J. Independent
4 Dempsey, N. Fianna Fáil
5 English, D. Fine Gael
6 Farrelly, J. Fine Gael
7 Fitzgerald, B. Independent

Candidate Party

8 Kelly, T. Independent
9 O’Brien, P. Independent

10 O’Byrne, F. Green Party
11 Redmond, M. Christian Solidarity

12 Reilly, J. Sinn Féin
13 Wallace, M. Fianna Fáil
14 Ward, P. Labour

Fig 13. List of candidates from the Meath constituency election in 2002 for five seats in the
Dáil Éireann (reproduced from [12]).

Éireann uses the single transferable vote (STV) election system, in which voters
rank candidates. In the Meath constituency, there were 14 candidates in the
2002 election, running for five allotted seats. The candidates identified with the
two major rival political parties, Fianna Fáil and Fine Gael, as well as a number
of smaller parties (Figure 13). See [12] for more election details as well as an
alternative analysis. In our experiments, we used a subset of roughly 2500 fully
ranked ballots from the election.

To summarize the dataset, Figure 14(a) shows the estimated first-order mar-
ginals. Candidates {1, 2, 4, 5, 6, 13} form the set of “major” party candidates
belonging to either Fianna Fáil or Fine Gael, and as shown, fared much better
in the election than the minor party candidates. Notably, candidates 11 and 12
(belonging to the Christian Solidary Party and Sinn Féin, respectively) received
on average, the lowest ranks in the election. One of the differences between
the two candidates, however, is that a significant portion of the electorate also
ranked the Sinn Féin candidate high.

Though it may not be clear how one might partition the candidates, a natural
idea might be to assume that the major party candidates (A) are riffle indepen-
dent of the minor party candidates (B). In Figure 14(b), we show the first-order
marginals corresponding to an approximation in which A and B are riffle inde-
pendent. Visually, the approximate marginals can be seen to be roughly similar
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Fig 14. Irish first order marginals.

to the exact marginals, however there are significant features of the matrix which
are not captured by the approximation — for example, the columns belonging
to candidates 11 and 12 are not well approximated. In Figure 14(c), we plot the
approximation corresponding to a learned hierarchy, which we discuss next. As
can be seen, the marginals obtained via structure learning are visually much
closer to the exact marginals.

Structure discovery on the Irish election data As with the APA data,
both the exhaustive optimization of F̂ and the Anchors algorithm returned the
same tree, with running times of 69.7 seconds and 2.1 seconds respectively (not
including the 3.1 seconds required for precomputations). The resulting tree is
shown (only up to depth 4), in Figure 15. As expected, the candidates belonging
to the two major parties, Fianna Fáil and Fine Gael, are neatly partitioned into
their own leaf sets. The topmost leaf is the Sinn Fein candidate, indicating that
voters tended to insert him into the ranking independently of all of the other
13 candidates.

To understand our algorithm with smaller sample sizes, we looked for features
of the tree from Figure 15 which remained stable even when learning with smaller
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Fig 15. Learned hierarchy for Irish Election dataset using all 2500 ballots.
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sample sizes. In Figure 16(a), we resample from the original training set 200
times at different sample sizes and plot the proportion of learned hierarchies
which, (a) recover the Sinn Fein candidate as the topmost leaf, (b) partition
the two major parties into leaf sets, and (c) agree with the original tree on
all leaf sets, and (d) recover the entire tree. Note that while the dataset is
insufficient to support the full tree structure, even with about 100 training
examples, candidates belonging to the major parties are consistently grouped,
indicating strong party influence in the election.

We compared the results between learning a general hierarchy (without fixed
k) and learning a 1-thin chain model on the Irish data. Figure 16(b) shows the
log-likelihoods achieved by both models on a held-out test set as the training set
size increases. For each training set size, we subsampled the Irish dataset 100
times to produce confidence intervals. Again, even with small sample sizes, the
hierarchy outperforms the 1-chain and continually improves with more training
data. One might think that the hierarchical models, which use more parame-
ters are prone to overfitting, but in practice, the models learned by our algo-
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rithm devote extra parameters towards modeling correlations among the two
major parties. As our results suggest, such intraparty correlations are crucial
for achieving good modeling performance.

7. Conclusions

Exploiting independence structure for efficient inference and low sample com-
plexity is a simple yet powerful idea, pervasive throughout the machine learning
literature, showing up in the form of Bayesian networks, Markov random fields,
and more. For rankings, independence can be problematic due to mutual exlu-
sivity constraints, and we began our paper by indicating a need for a useful
generalization of independence.

The main contribution of our paper is the definition of such a generalized
notion, namely, riffled independence. There are a number of natural questions
that immediately follow any such definition, such as:

• Does the generalization retain any of the computational advantages of
probabilistic independence?

• Can we find evidence that such generalized independence relations hold
(or approximately hold) in real datasets?

• If subsets of items in a ranking dataset indeed satisfy the generalized inde-
pendence assumption, or approximately so, how could we algorithmically
determine what these subsets should be from samples?

We have shown that for riffled independence, the answer to each of the above
questions lies in the affirmative. We next explored hierarchical riffle independent
decompositions. Our model, in which riffle independent subsets are recursively
chained together, leads to a simple, interpretable model whose structure we can
estimate from data, and we have successfully applied our learning algorithms to
several real datasets.

Currently, the success of our structure learning methods depends on the exis-
tence of a sizeable dataset of full rankings. However, ranking datasets are more
typically composed of partial or incomplete rankings, which are easier to elicit
from users. For example, top-k type rankings, or even rating data (in which a
user/judge provides a rating of an item between, say, 1 and 5) are common. Ex-
tending our learning algorithms for handling such partially ranked data would
be a valuable and practical extension of our work. For structure learning, our
tripletwise mutual information measures can already potentially be estimated
within a top-k ranking setting. It would be interesting to also develop methods
for estimating these mutual information measures from other forms of partial
rankings. Additionally, the effect of using partial rankings on structure learning
sample complexity is not yet understood, and the field would benefit from a
careful analysis.

Riffled independence is a new tool for analyzing rankings and has the poten-
tial to give new insights into ranking datasets. We believe that it will be crucial
in developing fast and efficient inference and learning procedures for rankings,
and perhaps other forms of permutation data.
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