
Exploiting Probabilistic Independence for Permutations: Proofs

Jonathan Huang, Carlos Guestrin

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
{jch1,guestrin}@cs.cmu.edu

Xiaoye Jiang, Leonidas Guibas

Stanford University
Stanford, California 94305

{guibas@cs,xiaoyej}@stanford.edu

Appendix: The Littlewood-Richardson

rule

Let λ be a partition of n and let p and q be positive
integers such that p + q = n. If ρλ is any irreducible
representation of Sn, then, restricted to permutations
which lie in the subgroup Sp × Sq ⊂ Sn, ρλ splits
according to Maschke's theorem as a direct sum of
irreducibles of Sp × Sq which take the form ρµ ⊗ ρν
(where µ and ν are partitions of p and q respectively):

ρλ ↓Sp×Sq≡
⊕
µ,ν

cλµ,ν⊕
`=1

ρµ ⊗ ρν . (0.1)

The multiplicities in the decomposition (Equation 0.1)
are equivalent to the famousLittlewood-Richardson co-
e�cients, 1 and in this appendix, we describe a result
known as the Littlewood-Richardson (LR) rule which
will allow us to compute the Littlewood-Richardson
coe�cients tractably (at least for low-order terms).
There are several methods for computing these num-
bers (see [Knutson and Tao, 1999, Vakil, 2006], for
example) but it is known ([Narayanan, 2006]) that,
in general, the problem of computing the Littlewood-
Richardson coe�cients is #P -hard in general, and as
we will see, involves enumerating the integer feasible
points of a linearly constrained polytope.

The statement of the LR rule requires us to de�ne a
class of (rather complex) combinatorial objects known
as the Littlewood-Richardson tableaux, which will be
used to count the LR coe�cients. We proceed by de�n-
ing the LR tableaux in several stages.

• (Ferrers diagrams) We can visualize a partition λ,
of n, using a Ferrers diagram which is an array of
boxes with λi boxes in the ith row of the associ-
ated Ferrers diagram. For example, we have the

1In most texts, the Littlewood-Richardson coe�cients
are de�ned in a slightly di�erent way using induced repre-
sentations (see [Sagan, 2001]), but the de�nition given in
this paper is equivalent.

following partitions of n = 5 and their respective
Ferrers diagrams.

(5) (4, 1) (3, 2) (3, 1, 1)

(2, 2, 1) (2, 1, 1, 1) (1, 1, 1, 1, 1)

• (Skew tableaux) Let λ be a partition of n and µ
a partition of some p ≤ n. A skew tableau with
shape λ\µ is the diagram obtained by removing
all boxes of the Ferrers diagram of λ which also
belong to the Ferrers diagram of µ. The following
are a few examples of skew tableaux and their
corresponding shapes.

λ\µ = (6, 3, 1)\(3, 1) λ\µ = (3, 3, 3)\(2, 2)

• (Content) As before, we will consider λ to be a
partition of n and µ to be a partition of some
p ≤ n. Additionally, let ν be a partition of q =
n− p. We say that a skew tableaux of shape λ\µ
has content ν = (ν1, ν2) if its boxes are �lled in
with ν1 ones, ν2 twos, and so on. To extend the
previous example, we have:

λ\µ = (6, 3, 1)\(3, 1) λ\µ = (3, 3, 3)\(2, 2)
ν = (3, 2, 1) ν = (4, 1)

1 1 1
3 2

2

1
1

1 2 1
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• (Semistandard tableaux) We say that a skew
tableau with shape λ\µ and content ν is semis-
tandard if its rows are weakly increasing (reading
from left to right) and its columns are strictly in-
creasing (reading from top to bottom). For exam-
ple, the following are semistandard tableaux with
shape (6, 3, 2)\(3, 1):

ν = (4, 2, 1) ν = (2, 2, 2, 1) ν = (5, 2)
1 2 3

1 1
1 2

1 1 2
3 3

2 4

1 1 1
1 1

2 2

ν = (2, 2, 1, 1, 1) ν = (4, 2, 1)
3 4 5

1 1
2 2

1 1 1
1 2

2 3

While the following are invalid as semistandard
tableaux:

ν = (4, 2, 1) ν = (5, 2)
3 2 1

1 1
1 2

1 1 2
1 2

1 1
(row 1 (column 2

not weakly increasing) not strictly increasing)

• (Reverse lattice word constraint) A word w1 . . . wr
is said to be a lattice word if, for each s ≤ r, the
subsequence w1 . . . ws contains at least as many
ones as twos, at least as many twos and threes,
and so on. For example, 11123211 and 12312111
are lattice words while 1114 and 12321111 are not
(in the �rst case because there are more fours than
threes in 1114, and in the second case because
there are more twos than ones in the subsequence
1232).

A skew tableau is said to satisfy the reverse lattice
word constraint if a lattice word is obtained by
reading its entries from top to bottom and from
right to left (as in Hebrew). The following are two
examples for skew tableaux satisfying the reverse
lattice word constraint.

1 2 1
1 2

3 1
−→ 121|21|13

1 1 1
1 2

2 3
−→ 111|21|32

De�nition 1. A skew tableaux with shape λ\µ with
content ν which is semistandard and whose row word is
a lattice permutation is called a Littlewood-Richardson
tableau.

As an example, the following are the two valid
Littlewood-Richardson tableaux with shape λ\µ =
(6, 3, 2)\(3, 1) and content ν = (4, 2, 1):

1 1 1
1 2

2 3

1 1 1
2 2

1 3
,

while the following tableau is invalid as a Littlewood-
Richardson tableau since it does not satisfy the reverse
lattice word constraint:

1 1 1
1 3

2 2
.

We conclude that cλµν = 2.

Theorem 2 (Littlewood-Richardson rule). The
Littlewood-Richardson coe�cient, cλµ,ν , is equal to the
number of Littlewood-Richardson tableaux with shape
λ\µ and content ν.

Proof. See [Sagan, 2001, James and Kerber, 1981], for
example.

In the proofs that follow, we will rely on a useful
property that follows directly from the Littlewood-
Richardson rule.

De�nition 3. Let λ be a partition of n and µ a par-
tition of p ≤ n. We say that µ is a subpartition of λ if
for every i, µi ≤ λi.
Lemma 4. The LR coe�cient cλµν = 0 unless both µ
and ν are subpartitions of λ.

De�nition 5. Let λ = (λ1, . . . , λ`) be a partition of
n. The height of λ is de�ned to be `.

For the sake of brevity, we will content ourselves to
say that the set of Littlewood-Richardson tableaux for
a given shape can be enumerated recursively and with
complexity depending (exponentially) on the height
of lambda. Finally for some concreteness and intu-
ition, the following decompositions for low-order pairs
of irreducibles hold (proofs are straightforward appli-
cations of the Littlewood-Richardson rule and are thus
omitted).

Proposition 6. Consider n ≥ 2 and any positive in-
tegers p, q such that p + q = n. Then the following
decomposition holds:

ρ(n−1,1) ↓Sp×Sq≡(ρ(p) ⊗ ρ(q))⊕ (ρ(p−1,1) ⊗ ρ(q))

⊕ (ρ(p) ⊗ ρ(q−1,1)).

Proposition 7. Let n ≥ 2 and p, q be any positive
integers such that p + q = n. Then the following de-
composition holds:

ρ(n−2,2) ↓Sp×Sq≡(ρ(p) ⊗ ρ(q))⊕ (ρ(p) ⊗ ρ(q−1,1))⊕
(ρ(p) ⊗ ρ(q−2,2))⊕ (ρ(p−1,1) ⊗ ρ(q))⊕
(ρ(p−1,1) ⊗ ρ(q−1,1))⊕ (ρ(p−2,2) ⊗ ρ(q)),
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except in the following exceptional boundary cases for
p (the same rules apply for q):

• (p = 3) If p = 3, remove the term ρ(p−2,2) ⊗ ρ(q).

• (p = 2) If p = 2, remove the terms ρ(p−1,1) ⊗ ρ(q)

and ρ(p−2,2) ⊗ ρ(q).

• (p = 1) If p = 1, remove all terms except ρ(p) ⊗
ρ(q−1,1) and ρ(p) ⊗ ρ(q−2,2).

Proposition 8. Let n ≥ 2 and p, q be any positive
integers such that p + q = n. Then the following de-
composition holds:

ρ(n−2,1,1) ↓Sp×Sq≡(ρ(p) ⊗ ρ(q−1,1))⊕ (ρ(p) ⊗ ρ(q−2,1,1))⊕
(ρ(p−1,1) ⊗ ρ(q))⊕ (ρ(p−1,1) ⊗ ρ(q−1,1))⊕
(ρ(p−2,1,1) ⊗ ρ(q)),

except in the following exceptional boundary cases for
p (the same rules apply for q):

• (p = 2) If p = 2, remove the term ρ(p−2,1,1)⊗ρ(q).

• (p = 1) If p = 1, remove all terms except ρ(p) ⊗
ρ(q−1,1) and ρ(p) ⊗ ρ(q−2,2).

Appendix: Proofs

Proof of Lemma 1. De�ne the sets: Y = {k : h(σi =
k) > 0 for some i ∈ X}, and Z = {k : h(σj = k) >
0 for some j ∈ X̄}. By construction, h(σ) = 0 unless
σX ⊂ Y (and σX̄ = Z), so we need only show that
|Y | = |X|. By mutual exclusivity, |X| ≤ |Y | and
|X̄| ≤ |Z|. We now show that Y ∩ Z = ∅, which will
imply that |Y | = |X|. Suppose that there exists some
k ∈ Y ∩ Z. Then by the de�nitions of Y and Z, there
exists i ∈ X and j ∈ X̄ such that both h(σi = k) > 0
and h(σj = k) > 0. However, by mutual exclusivity,
h(σi = k, σj = k) = 0, and by independence, we see
that h(σi = k)h(σj = k) = 0, thus arriving at a con-
tradiction since we assumed that neither h(σi = k) nor
h(σj = k) is equal to zero.

Proof of Theorem 11. Without loss of generality, we
will only consider the marginals of (1, . . . , p). The Split
algorithm returns the following matrix (see the proof
of Proposition 7):h

Split(ĥ)
i
µ

=
X

σ∈Sp×Sq

h(σ)(ρµ ⊗ ρ(q)(σ)),

=
X
σp∈Sp

0@ X
σq∈Sq

h(σp, σq)

1A ρµ(σp).

Let f be the inverse Fourier transform of Split(ĥ). By
the de�nition of the Fourier transform, we see that for
any σp ∈ Sp, f(σp) =

∑
σq∈Sq h(σp, σq), which is the

marginal probability of σp under the distribution h.

0.1 Marginal Preservation Guarantees

We now state a few properties of partitions and
Littlewood-Richardson coe�cients in order to prove
the Join and Split guarantees.

Lemma 9. De�ne the partition:

λMIN
s = (n− s, 1, . . . , 1︸ ︷︷ ︸

s times

),

for some 0 ≤ s < n, and the set Λs = {µ : µ =
(n−r, . . . ) for some r ≤ s.}. The following three state-
ments are equivalent.

I. µD λMIN
s .

II. µ ∈ Λs.
III. height(µ) ≤ height(λMIN

s ) = s+ 1.

Proof.

• (I → II): If µ /∈ Λs then µ = (n−r, . . . ) for some
r > s. By de�nition of the dominance order, we
have that µ C λMIN

s .

• (II → III): If µ = (n− r, . . . ), there are at most
r entries in the partition µ besides the �rst entry
(n − r). If µ ∈ Λs, then we have r ≤ s meaning
that there are at most s entries beyond the �rst
and thus height(µ) ≤ s+ 1.
• (III → I): If µ C λMIN

s , then by de�nition of
the dominance order, we have for each partial sum
(for any i):

iX
k=1

µk <

iX
k=1

“
λMIN
s

”
k

The height of µ is the minimum i for which∑i
k=1 µk = n. By the inequality, we see that

the right side must reach n strictly before the left
side does as we increase i, and thus we have that
height(λMIN

s ) < height(µ).

Lemma 10. De�ne the partitions:

λMIN = (n− s, 1, . . . , 1︸ ︷︷ ︸
s times

), µMIN = (p− k, 1, . . . , 1︸ ︷︷ ︸
k times

),

(0.2)
where k = min(s, p−1). If λ is any partition of n such
that λD λMIN , then for any partition µ of p which is
also of subpartition of λ, we have µD µMIN .

Proof. By Lemma 9, height(λ) ≤ height(λMIN ) = s+
1. But since µ is a subpartition of λ, we also have that
height(µ) ≤ height(λ). And since µ is a partition of p,
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Proof of Proposition 7.

L ·
hdf · gi

λ
· LT = L ·

 X
σ∈Sn

f(σp) · g(σq)ρλ(σ)

!
· LT , (Def. of Fourier transform of f · g)

=
X

σ∈Sp×Sq

f(σp) · g(σq)
“
L · ρλ(σ) · LT

”
, (Equation 5.1, linearity)

=
X

σ∈Sp×Sq

f(σp) · g(σq)

0B@M
µ,ν

cλµ,νM
`=1

ρµ(σp)⊗ ρν(σq)

1CA , (Equation 5.2)

=
M
µ,ν

cλµ,νM
`=1

0@X
σ∈Sp

f(σp)ρµ(σp)

1A⊗
0@X
σ∈Sq

g(σq)ρν(σq)

1A , (Bilinearity of ⊗)

=
M
µ,ν

cλµ,νM
`=1

“ bfµ ⊗ bgν” , (Def. of Fourier transform).

height(µ) ≤ p. Putting these inequalities together, we
see that height(µ) ≤ min(p, s+ 1). Finally,

height(µMIN ) = k + 1
= min(s, p− 1) + 1
= min(p, s+ 1),

showing that height(µ) ≤ height(µMIN ). By Lemma 9
again, we conclude that µD µMIN .

Corollary 11. The set of Fourier coe�cients:{
f̂µ, ĝν : µ is a partition of p,

ν is a partition of q,

and µ, ν are both subpartitions of λ} ,

is su�cient for constructing ĥλ for any partition λ, of
n = p+ q.

Proof of Theorem 8. We need to be able to construct
ĥλ at all partitions λ such that λD λMIN . By Corol-
lary 11, we need subpartitions µ and ν, of λ at all
λ D λMIN . But by Lemma 4, all such subpartitions
are above µMIN and νMIN with respect to the domi-
nance ordering, respectively.

Proof of Theorem 9. Let µ = (µ1, µ2, . . . , µ`) be any
partition of p such that µ D µMIN . By Lemma 9, we
have that height(µ) ≤ height(µMIN ) = min(p, s + 1).
De�ne the partition µ̃ = (µ1 + n− p, µ2, . . . , µ`). Two
things are immediate: �rst, µ is a subpartition of µ̃,
and second, since µ is a partition of p, µ̃ is a partition

of n. We also have, by Lemma 9 again, that

height(µ̃) = height(µ),

≤ min(p, s+ 1),
≤ s+ 1,

= height(λMIN ),

and therefore it must be the case that µ̃D λMIN . Fi-
nally, we have that cµ̃µ,(q) = 1 exactly.

0.2 Lexicographical Order Preservation

Guarantees

We can extend the marginal preservation results above
to hold for the �ner lexicographical ordering on parti-
tions.

De�nition 12 (Lexicographical Comparison). Sup-
pose λ1, λ2 ` n. We say that λ1 � λ2 if we have
λ1
i < λ2

i at the �rst part i for which λ
1
i 6= λ2

i .

Lex comparisons induce a total ordering on the set of
partitions of n, and we will denote the index of a par-
ticular partition λ in the lex ordering by lexindexn(λ).
For example, the lex ordering for partitions of n = 4
is given by:

lexindexn(λ) 1 2 3 4 5
λ (4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

It is known that the lexicographical ordering is a re-
�nement of the dominance ordering.

Proposition 13. Consider µ ` p, ν ` q, and λ ` n
(where p + q = n). If lexindexn(λ) < lexindexp(µ)
(or similarly, if lexindexn(λ) < lexindexq(ν)), then
cλµν = 0.
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Before proving the proposition, we de�ne the following
operation which will allow us to compare partitions of
p with partitions of n.

De�nition 14. Given a partition µ = (µ1, µ2, . . . ) `
p, the partition µ ↑np is a partition of n given by µ ↑np=
(µ1 + n− p, µ2, µ3, . . . ). Thus µ and µ ↑np agree on all
parts except the �rst.

Lemma 15. Let µ ` p. The following inequality holds:
lexindexp(µ) ≤ lexindexn(µ ↑np ).

Proof. We proceed by induction on lexindexp(µ).
First, the lemma is obvious when lexindexp(µ) = 1
(when µ = (p)).

Now we consider the case where lexindexp(µ) > 1.
Let µ′ be any partition of p with µ′ ≺ µ. First, we
remark that (µ′) ↑np≺n µ ↑np since we are adding n− p
to both µ′1 and µ1.

By the inductive hypothesis, we have that

lexindexp(µ′) ≤ lexindexn
(
(µ′) ↑np

)
< lexindexn

(
µ ↑np

)
.

Since we have shown that lexindexp(µ′) <
lexindexn(µ ↑np ) for every µ′ such that µ′ ≺p µ, we
conclude that lexindexp(µ) ≤ lexindexn(µ ↑np ).

Proof. (of Proposition 13) The assumption is that
lexindexn(λ) < lexindexp(µ). By Lemma 15, it must
also be the case that:

lexindexn(λ) < lexindexn(µ ↑np ). (0.3)

By de�nition of the lex ordering, Equation 0.3 means
that there exists some i for which

(
µ ↑np

)
i
< λi and(

µ ↑np
)
j

= λj for all j < i.

We now argue that µ cannot possibly be a subpartition
of λ, which will imply that cλµν = 0 by the Littlewood-
Richardson rule. We de�ne the following partitions:

λchop = (λi, λi+1, . . . ), µchop = (µi, µi+1, . . . ).

Clearly, λchop is a partition of a = n −
∑i−1
j=1 λj and

µchop is a partition of b = p−
∑i−1
j=1 µj . We will prove

that µchop is not a subpartition of λchop, which will
then imply that µ is not a subpartition of λ.

Now we know that
(
µ ↑np

)
1
≤ λ1 (if it were greater,

then the assumption in Equation 0.3 would be false).
Thus, µ1 + n− p ≤ λ1. Or rearranging,

µ1 ≤ λ1 − n+ p. (0.4)

Thus, we have:

b = p−
i−1X
j=1

µj

= p− µ1 −
i−1X
j=2

µj ,

≥ p− (λ1 − n+ p)−
i−1X
j=2

λj ,

(by Equation 0.4 and since µj = λj for

j = 2, . . . , i− 1 by our de�nition of i)

≥ n−
i−1X
j=1

λj ,

≥ a.

To summarize, we have shown that λchop ` a and
µchop ` b, where b ≥ a, but µi < λi. Under these con-
ditions, it is impossible for µchop to be a subpartition
of λchop. We therefore must conclude that µ is not a
subpartition of λ and hence, that cλµν = 0.
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