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Abstract

Permutations are ubiquitous in many real
world problems, such as voting, rankings and
data association. Representing uncertainty
over permutations is challenging, since there
are n! possibilities. Recent Fourier-based
approaches can be used to provide a compact
representation over low-frequency compo-
nents of the distribution. Though polyno-
mial, the complexity of these representations
grows very rapidly, especially if we want to
maintain reasonable estimates for peaked dis-
tributions. In this paper, we �rst characterize
the notion of probabilistic independence for
distributions over permutations. We then
present a method for factoring distributions
into independent components in the Fourier
domain, and use our algorithms to decom-
pose large problems into much smaller ones.
We demonstrate that our method provides
very signi�cant improvements in terms of
running time, on real tracking data.

1 Introduction
The need to reason about permutations arises in a
broad variety of applications, such as information
retrieval, webpage ranking, preference elicitation, and
multiobject tracking (Huang et al., 2007; Lebanon
and Mao). Yet exact solutions remain hopelessly
intractable due to the fact that there are n! permuta-
tions and that compact representations of uncertainty,
such as graphical models, are ine�ective due to the
mutual exclusivity constraints that are associated
with permutations.

A recent strand of research in the machine learning
community (Huang et al., 2007; Kondor et al.,
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2007), however, has shown that maintaining the �low
frequency� Fourier coe�cients of a distribution over
the symmetric group Sn (the group of permuta-
tions of n objects) o�ers a promising new approach
for approximate inference over previous methods.
Low frequency Fourier coe�cients capture intuitive
marginals and (Huang et al., 2007; Kondor et al., 2007)
have developed a collection of general and e�cient
approximate inference operations, like marginalization
and conditioning, which can be performed completely
in the Fourier domain. Unfortunately, the current
approach su�ers from two shortcomings in scalability
and accuracy:

• While low frequency Fourier coe�cients provide
a principled approximation to the underlying dis-
tribution and only require storing polynomially
many numbers, the polynomials can grow quite
fast for practical applications.

• Bandlimited approximations which discard high
frequencies are most e�ective with di�use dis-
tributions since smooth functions tend to be
well approximated by linear combinations of low
frequency basis functions, but are less e�ective at
approximating highly peaked distributions.

In a sense, the two shortcomings listed above are at
odds with each other since we can always achieve
better approximations to sharp functions by main-
taining higher frequency Fourier coe�cients. But an
interesting observation is that when the distribution
is sharp, it often makes more sense to break up
the problem into smaller parts and to reason about
disjoint subsets of objects independently of each other.

Consider the identity management problem, for
example, that arises in multiobject tracking, where
one must maintain a belief over the joint one-to-one
assignment of n tracks to n identities (Alice is at
Track 1, Bob is at Track 2, etc.). If we are completely
uncertain about the assignment of people to tracks,
and have a uniform distribution over permutation,
this smooth distribution can be represented with
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only one parameter in the Fourier domain. At the
limit when we know the location of every identity,
our distribution becomes very peaked, and we need
to maintain n! Fourier coe�cients. In this peaked
setting, however, there is no reason to track all n iden-
tities jointly, and we can break up the problem into n
subproblems. In this paper, we propose a principled
method based on exploiting probabilistic indepen-
dence which overcomes both issues and show that in
practice, we can indeed �get the best of both worlds�.

The main contributions of our paper are:

• We characterize the constraints on the Fourier
coe�cients of a distribution over permutations
implied by probabilistic independence, and
present two simple algorithms, Join and Split,
which operate entirely in the Fourier domain for
combining factors to form a joint distribution
and factoring a distribution, respectively. Our
algorithms are fully general in the sense that they
work for any distribution over permutations.

• We identity the number of Fourier terms which
are required in our Join/Split algorithms to
achieve a desired number of Fourier terms in
the result, and analyze the behaviour of our
algorithms in near-independent situations in
which a distribution does not fully factor.

• We discuss a method for detecting probabilistic
independence using only Fourier coe�cients.

• Finally, we use our algorithms to adaptively
decompose large identity management problems
into much smaller ones, improving previous meth-
ods both in scalability and approximation quality.

2 Probability distributions on

permutations

We begin with a general discussion of distributions on
permutations and their marginals. Any distribution
h(σ), de�ned over the symmetric group can be viewed
as a joint distribution over the n variables σ =
(σ1, . . . , σn) (where σi ∈ {1, . . . , n}), subject to mu-
tual exclusivity constraints which ensure that objects
i and j never map to the same thing (h(σi = σj) = 0
whenever i 6= j). Since there are n! permutations, it is
infeasible to represent entire distributions and one can
only hope to maintain compact summary statistics
instead. Perhaps the most common way to summarize
distributions on Sn is to use the �rst-order summary,
which stores a marginal distribution over singleton
variables (for example, it might store the marginal
probability of Alice being in Track 1), and thus
requires storing a matrix of only O(n2) numbers. For
example, if P (σ) is speci�ed by the following table,

σ([ABC]) [123] [213] [132] [321] [231] [312]

P (σ) 1/3 1/6 1/3 0 1/6 0

then the �rst-order matrix of marginal probabilities
associated with P (σ) is given by:264 Alice Bob Cathy

Track 1 2/3 1/6 1/6
Track 2 1/3 1/3 1/3
Track 3 0 1/2 1/2

375 .
However, there are more complex marginals that can
often provide important information about a distribu-
tion on permutations. In this paper, we will be in-
terested in querying the sth-order marginals, which
are marginal probabilities of s-tuples. The second-
order marginals, for example, take the form P (σ :
σ(k, `) = (i, j)), and in identity management, might
jointly capture the joint probability of Alice being in
Track 1 and of Bob being in Track 2. While the
�rst-order marginals require O(n2) storage, second-
order marginals require O(n4) storage. As we discuss
in Section 4, low order marginal probabilities corre-
spond, in a certain sense, to the low frequency Fourier
coe�cients and thus the bandlimited approximations
used in (Huang et al., 2007; Kondor et al., 2007) can
be thought of as methods for maintaining low-order
marginal probabilities.

3 First-order independence conditions

While band-limiting our representation can decrease
the storage cost from O(n!) to some polynomial in
n, maintaining the sth-order marginals requires, in
the worst-case, O(n2s) space. Thus, for small n we
can maintain higher order coe�cients (larger s), but
this representation quickly becomes intractable as
n becomes large. Over the next sections, we will
show how probabilistic independence is manifested
in the Fourier coe�cients of a distribution, and
how, by exploiting this independence, we can break
our distribution into smaller subgroups, allowing
higher-order coe�cients to be maintained. We begin
with a simple condition on the matrix of �rst-order
marginal probabilities implied by independence.

De�nition 1. Consider any subset X ⊂ {1, . . . , n}
and its complement X̄ ⊂ {1, . . . , n}. X and X̄ are
independent under a distribution h(σ) if h(σ) factors
as the following product of distributions over X and
X̄: h(σ) = f(σX) · g(σX̄)

If X = {1, . . . , p}, for example, h(σ) =
f(σ1, . . . , σp)g(σp+1, . . . , σn). We will refer to X and
X̄ as cliques since the variables of X and X̄ form dis-
joint cliques in the graphical model representation of
the above independence relation. In this section, we
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discuss a simple �rst-order criterion for independence
on the symmetric group and show that it naturally
leads us to study functions over product groups of the
form Sp × Sq, where p+ q = n.

Due to the mutual exclusivity constraints associated
with permutations, a necessary (but insu�cient) con-
dition for a distribution on permutations h to factor
into a product of factors over X and X̄, respectively,
is that there must exist a subset Y ⊂ {1, . . . , n} of
the same size as X such that, with probability 1,
elements of X map to Y and elements of X̄ map to Ȳ .
We will refer to the above condition as the �rst-order
independence criterion. Intuitively, a distribution
can only factor into independent parts if the set
{1, . . . , n} can be partitioned into disjoint subsets of
objects which do not interact with one another. See
Figures 1(a) and 1(c) for example.

Lemma 2 (�rst-order independence criterion). If σX
and σX̄ are independent under the distribution h(σ)
(i.e., h(σ) = f(σX) · g(σX̄)), then there exists a subset
Y ⊂ {1, . . . , n} with |Y | = |X| such that h(σ) = 0
unless σX ⊂ Y .

To see why the �rst-order independence criterion is
an insu�cient indicator of independence, consider the
simple example of a distribution on S4 which always
maps the set X = {1, 2} to Y = {1, 2} and the set
X̄ = {3, 4} to Ȳ = {3, 4}, but is constrained to map 1
to 1 whenever 3 maps to 3. In this case, the 1st-order
marginals exhibit independence, but the distribution
is not independent when we examine the higher order
components. Despite its insu�ciency however, the
�rst-order independence plays a crucial role for us
in several ways. As we discuss later, it can serve as
a �rst pass at detecting independence as it reduces
the detection problem into a clustering-like problem.
But on a somewhat more theoretical level, it also
suggests that we should be thinking about groups of
the form Sp × Sq ⊂ Sn, where |X| = |Y | = p and
|X̄| = |Ȳ | = n− p = q, which we will later consider in
order to derive our Join and Split algorithms.

4 Fourier domain inference

While the �rst-order condition described in Section 3
is fairly intuitive, understanding probabilistic inde-
pendence at higher order marginals is considerably
more complicated. In this paper, we discuss proba-
bilistic independence at these higher order marginals,
and despite the somewhat intimidating math, the
algorithms we provide in this section (Section 5.1) are
quite simple. We begin by providing a brief overview
of several necessary concepts from Fourier analysis
over the symmetric group and motivate the idea that
�low-frequency� Fourier coe�cients of a distribution
on the symmetric group can be used to construct

low-order marginal probabilities. See (Huang et al.,
2008; Diaconis, 1988) for details.

Marginals and partitions. One of the key in-
sights behind the Fourier-based methods, is that the
�rst-order summaries can be constructed using a
�low-frequency� subset of the Fourier coe�cients of
a distribution over Sn, and moreover, the appropri-
ate generalization to �higher-frequency� coe�cients
allows one to capture more complicated marginals.
From the Fourier theoretic view, the �rst-order
marginals are lower frequency than the second-order
marginals, which are, in turn, lower frequency than
the third-order marginals, and so on. In the re-
mainder of the paper, we will identify each type of
marginal with some unique partition of n (which is
de�ned to be an unordered tuple of positive integers
λ = (λ1, . . . , λ`), which summing to n). In particular,
we will say that the sth-order marginal probabilities
are of type λ = (n − s, 1, . . . , 1), where there are
s trailing 1's. Thus λ = (n − 1, 1) refers to the
�rst-order marginals, while (n − 2, 1, 1) refers to the
second-order marginals. General partitions (not of
the form λ = (n − s, 1, . . . , 1)) can in fact also be
thought of as marginals. For example, the partition
λ = (n − 2, 2) refers to marginals of unordered pairs:
P (σ : σ({k, `}) → {i, j}), e.g., the probability that
Alice and Bob occupy tracks 1 and 2, in either order.
For simplicity, however, we will focus our discussion
on the marginals of type λ = (n− s, 1, . . . , 1), but our
results generalize to other partitions.

Fourier basis functions on groups. As it turns
out, each partition will be associated with its own set
of Fourier basis functions on the symmetric group. To
make the connection more precise, we will �rst discuss
Fourier basis functions on general �nite groups. We
start by de�ning a special class of functions on a
group, called representations, which form a superset
of the Fourier basis functions.

De�nition 3. A representation of a group G is a
map ρ from G to invertible dρ× dρ matrices such that
for all σ1, σ2 ∈ G, ρ(σ1σ2) = ρ(σ1) · ρ(σ2), where σ1σ2

refers to the composition of σ1 and σ2. We refer to dρ
as the degree of the representation.

The requirement that ρ(σ1σ2) = ρ(σ1) · ρ(σ2) is anal-
ogous to the familiar property from discrete Fourier
transforms that ei(θ1+θ2) = eiθ1 · eiθ2 . For noncommu-
tative groups, the di�erence is that representations
are matrix-valued, and so a d × d representation can
also be thought of as a collection of d2 functions at
once. The simplest example of a representation is
the function ρ(n) : Sn → R1×1 which maps every
permutation to 1. As a less trivial example, we de�ne
the �rst-order permutation representation of Sn to
be the degree n representation, τ(n−1,1), which maps
a permutation σ to its corresponding permutation
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Figure 1: Examples of �rst-order independence where two groups (of three people each) interact within their own groups
but not with the other group. In (a) and (c), we show how the identities and tracks can be partitioned into disjoint
subsets, X, X̄, Y , and Ȳ . (b) and (d), show an example of what the corresponding �rst-order marginals would look
like. In practice, we expect �rst-order independence to only hold approximately, as in (e).

matrix given by: [τ(n−1,1)(σ)]ij = 1 {σ(j) = i}.
Though the d2 functions encoded by a representation
are, in general, neither linearly independent nor
complete, there always exists a unique �nite set of
representations, ρ1, . . . , ρm which do form a complete
orthogonal basis for functions on G. These distin-
guished representations are known as the irreducibles
of G, and one of the main results of representation the-
ory, which we will use later, is that any representation
can, in a sense, be �built� using only irreducibles.

Theorem 4 (Maschke (Diaconis, 1988)). Given a
group representation ρ, there exists a d × d orthogo-
nal matrix C and multiplicities zλ such that for any
σ ∈ G: C · ρ(σ) · CT =

⊕
k

⊕zk
`=1 ρk(σ), where

⊕
denotes the matrix direct sum operation, and ρk are
irreducible representations.

We can now simply de�ne the Fourier transform of a
function f to be the collection of dot products of f
against each irreducible:

De�nition 5. Let f be any real-valued function on a
group G and let ρk be any irreducible representation
on G. The Fourier Transform of f at ρk is de�ned to
be: f̂ρk =

∑
σ f(σ)ρk(σ). (Note that f̂ρk is a dρk ×dρk

matrix).

Fourier transforms on Sn. While the problem of
determining the irreducibles of a given group can be a
highly nontrivial problem in general, the irreducibles of
Sn are well understood. On Sn, the set of irreducibles
is indexed by the partitions, λ, of n, re�ecting the
intuition that each irreducible gives information corre-
sponding to some unique type of marginal. On S3, for
example, there are three irreducibles, ρ(3), ρ(2,1), and
ρ(1,1,1). However, marginals and Fourier coe�cients
are not exactly the same � we cannot construct
marginals of type λ directly from f̂λ. In addition to
f̂λ, it is necessary to also know f̂µ at partitions µ which
are at a �lower frequency� than λ, in order to obtain
marginals of type λ. But what does it mean for an irre-
ducible to be low frequency? To answer this question,
we de�ne the dominance ordering on partitions.
De�nition 6. Let λ, µ be partitions of n. Then λ D
µ (we say λ dominates µ), if for each i,

∑i
k=1 λk ≥∑i

k=1 µk.

The dominance ordering imposes a partial (rather
than linear) order on partitions. For example
(4, 2) D (3, 2, 1) since 4 ≥ 3, 4 + 2 ≥ 3 + 2, and
4 + 2 + 0 ≥ 3 + 2 + 1. However, (3, 3) and (4, 1, 1) are
incomparable since 3 ≤ 4, but 3 + 3 ≥ 4 + 1. The ma-
trix of marginals of type λMIN for a distribution f(σ)
can always be reconstructed using f̂λMIN and a collec-
tion of Fourier coe�cients which are �lower frequency�
(or higher in the dominance ordering) than λMIN .

Theorem 7 (See (Huang et al., 2008; Diaconis,
1988)). Marginals of type λMIN of a distribution f(σ)
can be reconstructed using only the set of Fourier co-
e�cients {f̂λ : λD λMIN}.
For example, reconstructing the �rst order marginals
requires knowledge of Fourier coe�cients correspond-
ing to (n) and (n − 1, 1), while second order ordered
marginals require Fourier coe�cients at (n), (n−1, 1),
(n− 2, 2), and (n− 2, 1, 1).

E�cient inference in the Fourier domain. The
Fourier-theoretic approach is appealing because it
o�ers a uni�ed and principled framework for approx-
imations by allowing one to bandlimit, or discard
high frequency Fourier terms. Additionally, Fourier
coe�cients lend themselves to natural reformulations
of standard inference algorithms. Huang et al.
(Huang et al., 2007) present general algorithms for
performing inference in the Fourier domain for hidden
Markov models. In a nutshell, they show that the
prediction/rollup step of the Forward algorithm can
be written as a convolution and can be performed
in the Fourier domain as a pointwise product of
coe�cients. On the other hand, conditioning can be
written as a pointwise product and can therefore be
performed in the Fourier domain as a (generalized)
convolution of Fourier coe�cients.

5 Probabilistic independence in the

Fourier domain
In this section, we return to probabilistic indepen-
dence and generalize the results of Section 3 to hold
for higher-order Fourier terms. Since we maintain
the Fourier coe�cients of the distribution instead of
the actual distribution, there are several technical
challenges associated with (1) splitting a distribution
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into independent factors, (2) joining independent
factors to form a joint distribution, and (3) detecting
independent subsets in the Fourier domain. To
solve these problems, we will now relate the Fourier
coe�cients of the joint distribution h with the Fourier
coe�cients of the factors f and g. We �rst focus on
the special case when X = Y = {1, . . . , p} (we show
how to deal with general X and Y when we discuss
the detection step). Thus, we assume that:

h(σ) =

8<: f(σp)g(σq) if σp ⊂ {1, . . . , p}, (and
σq ⊂ {p+ 1, . . . , n})

0 otherwise
,

(5.1)

where σp = (σ1, . . . , σp), σq = (σp+1, . . . , σn), with
p+ q = n.

While the composite permutation σ = [σp σq] can be
seen as an element of Sn, it can additionally be viewed
as an element of the subgroup Sp×Sq whenever h(σ) 6=
0, where Sp×Sq is the subgroup of permutations which
map the set {1, . . . , p} into {1, . . . , p} (and thus also
map {p+ 1, . . . , n} into {p+ 1, . . . , n}). Evaluated at
an element σ ∈ Sp × Sq, any irreducible, ρλ of Sn,
can also be viewed as a representation of the group
Sp × Sq. As a representation of Sp × Sq, however, ρλ
is not necessarily reducible, but it can be related to
the irreducibles of Sp × Sq using Maschke's theorem
(Theorem 4), as we show in the following.

But what are the irreducibles of Sp × Sq? We use a
standard representation theoretic result that the set of
irreducibles of a direct product of two groups H ×K
is exactly the set of all pairwise tensor products of ir-
reducibles of H and K. Thus the set of irreducibles of
Sp×Sq is the set: {ρµ⊗ρν}, where µ and ν range over
partitions of p and q, respectively. A representation ρλ,
of Sn, when evaluated at a permutation σ which lies
in the subgroup Sp × Sq, therefore has the following
decomposition by Maschke's Theorem (Theorem 4):

Lλµν · ρλ(σ) · Lλµν
T

=
M
µ,ν

cλµ,νM
`=1

ρµ(σp)⊗ ρν(σq). (5.2)

The coupling matrix Lλµν , along with the multiplicities

cλµ,ν are assumed to be precomputed (see (Sagan, 2001;
Huang et al., 2008)). The following Proposition gives
the desired relation between the Fourier coe�cients of
the joint and the Fourier coe�cients of the factors.

Proposition 8. Given Fourier coe�cients of two in-
dependent factors f and g, the Fourier coe�cient ma-
trices of the joint distribution h, are:

bhλ =
hdf · gi

λ
= Lλµν

T ·
M
µ,ν

cλµ,νM
`=1

“ bfµ ⊗ bgν” · Lλµν . (5.3)

We remark that the independence assumption in
Prop. 8 is necessary and Eqn. 5.3 does not hold for
arbitrary functions even if they are zero outside of

Sp×Sq. As promised, Eqn. 5.3 characterizes the form
of the Fourier matrices of the joint distribution at all
frequencies. Recalling that (Lemma 2) that the �rst-
order marginals are constrained to be block diagonal,
we see (ignoring the change of basis) that Eqn. 5.3 in
fact imposes block diagonal structure on the Fourier
matrices at all orders. Additionally, we see that each
nonzero block has Kronecker structure at higher orders
and that the coe�cients of the joint are redundant
in the sense that information at lower frequencies of
the factors f and g are duplicated to multiple higher
frequencies of h. As it turns out, the multiplicities,
cλµ,ν , are equivalent to what mathematicians have
studied in di�erent contexts as Littlewood-Richardson
(LR) coe�cients. The LR coe�cients tell us which
crossterms contribute to the joint. For example, it can
be shown that that �rst-order terms corresponding
to the partition (n − 1, 1) can be reconstructed using
only three terms, (p) ⊗ (q), (p − 1, 1) ⊗ (q), and
(p) ⊗ (q − 1, 1). Computing the LR coe�cients has
been shown, in general, to be a #P -complete problem
(Narayanan, 2006). For low-order Fourier terms
(corresponding to partitions with only a few rows),
however, the Littlewood-Richardson rule ((Sagan,
2001)) computes the LR coe�cients in reasonable
time.Due to space constraints, we refer the reader
to (Sagan, 2001) for a discussion of the Littlewood-
Richardson rule. While the LR coe�cients have
been studied in various mathematical contexts,this
paper provides, to the best of our knowledge, the �rst
connection to probabilistic independence.

5.1 Algorithms and Approximation

We now discuss algorithms for merging independent
factors to form a joint (Join), and for extracting
independent factors from a joint (Split) based on our
Fourier domain factorization (Proposition 8). There
are two problems that one encounters in practice; �rst,
it is impossible to maintain a complete set of Fourier
coe�cients, and second, it is rare for distributions
to factor completely. We present novel theoretical
results in this section addressing both issues and show
that our algorithms behave reasonably in bandlimited
and near-independent (rather than fully-independent)
settings.

Join. The simplest operation of the two is the Join
algorithm � which is a straightforward implementa-
tion of Equation 5.3. Given the Fourier transforms f̂
and ĝ, the Fourier transform of the joint, ĥ, can be
constructed by forming the direct sum of appropriate
tensor product terms f̂µ ⊗ ĝν , and conjugating by the
precomputed coupling matrix Lλµν . The complexity of
the Join operation is dominated by the cost of matrix
multiplication (O(d3

ρ) for each representation ρ), and
is therefore no more expensive than the convolution
operations from (Huang et al., 2007).
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One might worry that we would require maintaining
high-frequency terms of the independent factors in
order to construct low frequency terms of the joint.
We show, using the Littlewood-Richardson rule, that
this is not the case when we maintain sth-order
marginals. For any integer s such that 0 ≤ s < n,
de�ne the following partitions:

λMIN = (n− s, 1, . . . , 1| {z }
s times

), µMIN = (p− k, 1, . . . , 1| {z }
k times

),

νMIN = (q − `, 1, . . . , 1| {z }
` times

),

where k = min(s, p − 1) and ` = min(s, q − 1). We
have the following guarantee.

Theorem 9. Given marginals of type µMIN for f
and of type νMIN for g, Join returns Fourier coe�-
cients of the joint distribution h which can reconstruct
marginals of type λMIN exactly.

Theorem 9 formalizes the intuitive idea that it is pos-
sible, using the Join algorithm, to exactly construct
sth-order marginals of the joint distribution using only
the sth-order marginals of each independent factor.
The proof of Theorem 9 is given in the appendix. A
more general principle holds for other partitions which
do not take the form λMIN = (n− s, 1, . . . , 1),but we
will focus on the simpler and more intuitive case of
sth-order marginals.

Split. Given the Fourier transform of the joint, ĥ, we
wish to formulate an algorithm which computes the
Fourier coe�cients of the factors, f̂ and ĝ, assuming
that the sets X = {1, . . . , p} and X̄ = {p + 1, . . . , n}
are independent under h. One can imagine �inverting�

the Join algorithm by computing Lλµν · ĥλ · Lλµν
T
and

reading o� the f̂µ and ĝν from the resulting matrix,⊕
µ,ν

⊕cλµν
`=1 f̂µ⊗ ĝν . The di�culty is that the matrices

f̂µ ⊗ ĝν , in general, only determine f̂µ and ĝν up to
a scaling factor, and in the approximate case when X
and X̄ are only �nearly� independent, the appropriate

blocks of the matrix Lλµν · ĥλ · Lλµν
T
do not take the

form A⊗B.
Happily though, we are in fact able to always con-
struct coe�cients of f̂ and ĝ using only blocks of the
form f̂µ ⊗ 1, or 1⊗ ĝν , allowing us to literally read o�

the matrices for f̂µ and ĝν .

Theorem 10. For any µDµMIN , there exists a block

of Lλµν ·ĥλ·Lλµν
T
for some λDλMIN which is identically

equal to f̂µ.

Likewise, for any ν D νMIN , there exists a block of

Lλµν · ĥλ ·Lλµν
T
for some λDλMIN which is identically

equal to ĝν . See Algorithm 1 for pseudocode for the
Split algorithm and the appendix for more details. As

Algorithm 1: Pseudocode for the Split algorithm.

Split

foreach partition µ of p such that µD µMIN do
λ← (µ1 + n− p, µ2, . . . ) ;

f̂µ ← (µ, (q))-block of the matrixLλµν · ĥλ · Lλµν
T
;

foreach partition ν of q such that ν D νMIN do
λ← (ν1 + n− q, ν2, . . . ) ;
ĝν ← ((p), ν)-block of the matrixLλµν · ĥλ · Lλµν

T
;

Normalize f̂ and ĝ;

a corollary, we obtain a converse to Theorem 9 which
says that given the sth-order marginals of the joint,
we will be able to recover the sth-order marginals of
the factors.

Corollary 11. Given marginals of type λMIN of the
joint h, Split returns Fourier coe�cients of the fac-
tors f and g which can be used to exactly reconstruct
marginals of type µMIN and νMIN , respectively.

Near-independence. Although exploiting inde-
pendence can signi�cantly reduce computation, it is
rare for full independence to hold in practice (Fig-
ure 1(e), for example). Consider calling the Split al-
gorithm on a distribution which does not factor into
distributions on Sp and Sq. Ideally, one would, in
this case, hope to obtain the Fourier transform of the
appropriate marginal distributions of (1, . . . , p) and
(p + 1, . . . , n). We now show that this is almost the
case and that we do recover exact marginals. How-
ever, due to the fact that the Split algorithm e�ec-
tively ignores mass outside of the subgroup Sp×Sq, we
are only able to accurately reconstruct marginals that
could have been computed using mass concentrated in
Sp × Sq. For example, if n = 6 and p = 3, then the
result of Split can reconstruct P (σ : σ(1, 2) = (2, 3))
but not P (σ : σ(1, 2) = (2, 5)) since the permutation
(2, 5) /∈ S3 × S3 ⊂ S6.

Theorem 12. Given marginals of type λMIN for an
arbitrary distribution h, the output of Split can be used
to reconstruct the subset of marginals of type µMIN

and νMIN which can be computed using only elements
of Sp×Sq, for (1, . . . , p) and (p+1, . . . , n) respectively,
Corollary 13. Whenever �rst-order independence
conditions hold for a distribution h, the output of Split
can be used to exactly reconstruct all marginals of h.

When �rst-order independence does not hold, the re-
sulting coe�cients do not correspond to a properly
normalized distribution, and in particular, f̂(p) is the
amount of mass assigned to elements of Sp × Sq (in-

stead of 1). However, since f̂ still corresponds to a pos-

itive function, one can easily normalize f̂ by dividing
all coe�cients by the zeroth-order Fourier coe�cient,
f̂(p), without requiring a projection to the marginal
polytope as in (Huang et al., 2007). Thus when a dis-
tribution is near �rst-order independent, we recover
approximate marginals.
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Detecting and measuring independence. We
now discard the assumption that X = Y = {1, . . . , p}
and deal with the problem of explicitly �nding sets X
and Y such that h(σX ⊂ Y ) = 1 and h(σX̄ ⊂ Ȳ ) = 1
as in the �rst-order independence criterion. We
begin with the simple observation that, if we knew
the sets X and Y , then the �rst-order matrix of
marginals would be rendered block diagonal under
an appropriate reordering of the rows and columns
(Figure 1(b)). Since X and Y are unknown, our task
is to �nd permutations of the rows and columns of the
�rst-order matrix of marginals (Figure 1(d)) to obtain
a block diagonal matrix. Viewing the matrix of �rst-
order marginals as a set of edge weights on a bipartite
graph between tracks and identities, we approach the
detection step as a biclustering problem (in which
one simultaneously clusters the tracks and identities)
with an extra balance constraint forcing |X| = |Y |.
In our experiments, we use a cubic time SVD-based
technique presented in (Zha et al., 2001) which �nds
bipartite graph partitions optimizing the normalized
cut measure modi�ed to satisfy the balance constraint.

Assuming now that we have obtained the sets X and
Y via the above clustering step, we can call the Split
algorithm by �rst renaming the tracks and identities
so that X = Y = {1, . . . , p}. Suppose that, to achieve
this reordering, we must permute the X (people)
using a permutation π1 and the Y (tracks) using π2.
The Shift Theorem can be applied to reorder the
Fourier coe�cients according to these new labels, and
we can then apply Algorithm 1 unchanged.

Proposition 14 (Shift Theorem (Diaconis, 1988)).
Given f : Sn → R, de�ne f ′ : Sn → R by f ′(σ) =
f(π1σπ2) for some �xed π1, π2 ∈ Sn. The Fourier

transforms of f and f ′ are related as: f̂ ′λ = ρλ(π1) ·
f̂λ · ρλ(π2).

We have focused on detecting independence in the
�rst-order sense. As discussed in Section 3, �rst-
order independence is necessary, but insu�cient for
higher order independence. However, as we showed
in Section 5.1, we can approximately recover marginal
probabilities when a distribution is near �rst-order in-
dependent. Furthermore, our biclustering approach
can also be viewed as a �rst pass for proposing can-
didate splits. Once this factoring is performed, we
can measure its e�ect on higher orders, e.g., using the
Plancherel Theorem (Diaconis, 1988) to measure the
distance between the original coe�cients and the fac-
tored result, and decide whether or not to retain the
partition.

6 Example: an adaptive solution for

identity management
As an application, we apply our algorithms in the
identity management setting. In both (Huang et al.,

2007) and (Kondor et al., 2007), one reasons jointly
over assignments of all n tracks to all n identities.
In realistic settings however, we believe that it is
often su�cient to only reason over small cliques of
tracks at a time. Thus instead of maintaining Fourier
coe�cients over all of Sn, we search for independent
cliques and adaptively split the distribution into
factors over smaller cliques whenever possible.

In our adaptive approach, we maintain a collection
of disjoint cliques over the tracks and identities.
After conditioning on any observation, we attempt
to split. We also force splits whenever cliques grow
to be too large to handle. Upon splitting, we allow
the representational size to grow to higher orders
� thus for very large n, we might only maintain
�rst-order coe�cients, but for smaller sized cliques,
we might choose to represent higher-order coe�cients.
Finally, whenever mixing events occur between tracks
belonging to distinct cliques, we merge the cliques
using our Join algorithm and perform a mixing on the
newly formed joint distribution.

7 Experiments

We evaluted our adaptive identity management
algorithm on a biotracking dataset from (Khan et al.,
2006). In their data, there are 20 ants (Fig. 7) moving
in an enclosed area. The data is interesting for our
purposes since it is a relatively large n compared to
many multiobject tracking datasets with interesting
movement patterns and plenty of mixing events (which
we log whenever ants walk within some distance of
each other). At each timestep, we allow each ant to
`reveal' its identity with some probability (in our ex-
periments, ranging from pobs = .005 to pobs = .05 per
timeframe), and our task is to jointly label all tracks
with identities for all timeframes. Due to the fact that
our experimental setup is quite di�erent from (Khan
et al., 2006) and that we do not consider positional un-
certainty, we are not able to compare with their results.
Instead, we compare with the nonadaptive algorithm
from (Huang et al., 2007). We measure accuracy
using the fraction of correctly labeled tracks over the
entire sequence (note that the accuracy of random
guessing is 1/n = 5% in expectation). As a splitting
criterion, we decide to to split if, after clustering, the
sum over all o�-block elements fall below a certain
threshold ε (in all experiments, we �xed ε = 1/(2n)).

In Figures 2(a) and 2(b), we compare the performance
of an adaptive approach against the nonadaptive algo-
rithm from (Huang et al., 2007) as we vary the ratio of
observations to mixing events. Figure 2(a) shows that
the two algorithms perform similarly in accuracy, with
the nonadaptive approach faring slightly better with
fewer observations (due to more di�use distributions)
and slightly worse with more observations (due to the



Exploiting Probabilistic Independence for Permutations

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

ratio of observations

la
be

l a
cc

ur
ac

y

Adaptive

Nonadaptive

(a) Accuracy comparison

0 0.1 0.2 0.3
0

500

1000

1500

2000

ratio of observations

el
ap

se
d 

tim
e 

pe
r 

ru
n 

(s
ec

on
ds

)

Adaptive

Nonadaptive

(b) Running times

0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

ratio of observations

Average number of cliques

Average maximum clique size

(c) Cliquesizes

20 40 60 80 100
0

200

400

600

800

1000

1200

1400

Number of objects

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

(d) Running times vs. n

Figure 2: Experimental results on biotracking data

fact that the adaptive approach can represent higher-
order Fourier terms). The real advantage of our adap-
tive approach is shown in Figure 2(b) which plots a
running time comparison. Since the conditioning step
is the complexity bottleneck of performing inference in
the Fourier domain, the running time scales according
to the proportion observations. However, since the
adaptive algorithm typically conditions smaller cliques
on average (especially with more observations), we see
that it is a far more scalable algorithm. In Figure 2(c),
we plot the average number of cliques and sizes of
cliques which were formed in the same experiment.
As expected, we see that the cliques get smaller and
more numerous as the number of observations grows.

Figure 3: Sample image from biotracking data

Finally, we simulated larger tracking problems by
taking m di�erent segments of the ant data and
tracking m · n ants at the same time allowing for ants
to `teleport' to other segments with some probability.
Figure 2(d) shows a comparison of average running
time for these larger problems. Note that at such
sizes, we can no longer feasibly run the original
nonadaptive algorithms from Huang et al. (2007);
Kondor et al. (2007).

8 Conclusion
A pervasive technique in machine learning for making
large problems tractable is to exploit independence
structures for decomposing large problems into much
smaller ones. It is the structure of (conditional) inde-
pendence, for example, which has made Bayes net and
Markov random �eld representations so powerful. In
this paper, we have contributed to the existing collec-
tion of e�cient Fourier-theoretic inference operations
by presenting a formulation of probabilistic inde-

pendence for permutations based on the Littlewood-
Richardson decomposition. While such decomposi-
tions have been used in mathematics, we are the �rst
to use them in the context of probabilistic indepen-
dence and to consider their bandlimiting properties.
Combined with the bandlimited inference algorithms
from (Huang et al., 2007; Kondor et al., 2007), we
believe that our algorithms will contribute to making
these Fourier methods highly scalable and practical.

Finally we view our contributions as a �rst step
towards understanding and exploiting more inter-
mediate notions which lie somewhere between full
independence and fully connected, such as conditional
or context-speci�c independence which have proven
themselves to be indispensible in the �elds of machine
learning and AI.
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