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Abstract. This paper presents elementary combinatorial proofs of Sperner’s

Lemma and discusses several non-trivial theorems to which it has been applied.

Examples are the Brouwer Fixed Point Theorem, the Fundamental Theorem
of Algebra, and the solution to the Cake-cutting problem.

1. Introduction

At first blush, the Sperner Lemma seems to be an almost obvious fact about
labelings of vertices on a special type of graph. Indeed, its proof is a fairly sim-
ple one, first established by the German mathematician, Emanuel Sperner in the
mid 1900’s. However, it has many surprising applications. The most well-known
application is an elegant proof of the Brouwer Fixed Point theorem without using
advanced topics like degree theory or homology.

Before beginning, it is necessary to first introduce some terminology. I will
then prove the lemma, then discuss a generalization of it, and several interesting
applications.

2. Terminology

An n-simplex is an n-dimensional generalization of a triangle. So a 0-simplex
is a point, a 1-simplex is a line segment, a 2-simplex, a triangle, a 3-simplex, a
tetrahedron, and so forth.

Definition 2.1. In general, if there are n + 1 independent points p0, p1, . . . , pn in
some Euclidean space, Rm (m ≥ n), then an n-simplex, ∆ is the convex hull of
this set. ∆ can also be expressed as the set {p0, p1, . . . pn}. An n-simplex which
is written as an ordered (n + 1)-tuple, < p0, p1, . . . pn >, is called an oriented n-
simplex (Unless otherwise mentioned, an n-simplex should be considered oriented
for the rest of the paper).

In particular, every point x of the simplex ∆ can be expressed as a linear com-
bination of these points:

x =
n∑

i=0

αipi

where
∑n

i=0 αi ≤ 1 and αi ≥ 0 for each i. We call the coefficients of this linear
combination the barycentric coordinates for the point x. Every n-simplex ∆ is
uniquely determined by its n + 1 vertices. Note that every k + 1 subset of these
n+1 vertices also determines a unique k-simplex, ∆′ ⊂ ∆. Each such ’sub-simplex’
is called a k-face of ∆.
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Definition 2.2. Suppose there is a finite collection of n-simplices whose union is
all of ∆, with the property that if any two of these simplices intersect, they must
do so at an entire face common to both simplices. Then we say that the collection
gives a triangulation of ∆. Any simplex in this collection will be referred to as an
elementary n-simplex, or simply as an n-simplex within the triangulation.

The concept of triangulation is central to the statement of the Sperner Lemma
and is also a very useful tool in the various topological results that will be discussed,
because it gives us a way to break a space into very small parts and to use continuity
arguments.

We would also like to have terminology concerning the boundary of an oriented
simplex. Call any (n − 1)-face of an n-simplex ∆, a facet. For example, if ∆ is a
tetrahedron, then the facets of ∆ are simply the four triangles which form the set
boundary of ∆. The following definitions are motivated by some basic concepts in
homology, where one forms formal linear combinations of simplices.

Definition 2.3. Given a triangulation of ∆, we say that the oriented elementary
simplices, ∆1 and ∆2 are equal if their vertices are the same up to an even permuta-
tion. If they are the same up to an odd permutation, then we say that ∆1 = −∆2.

Definition 2.4. If there is a triangulation of a simplex ∆, then an integer linear
combination of k-simplices in the triangulation is called a k-chain. More generally,
a k-chain is any integer linear combination of k-simplices.

The boundary ∂(S) of a k-simplex S =< p0, p1, . . . , pk > is defined by the
following formula (see [8] for a full treatment):

∂(S) =
∑

j

(−1)j < p0, . . . , pj−1, pj+1, . . . , pk >

Notice that this definition of a boundary map fits our intuition of what it should
be, for the boundary of 1-simplex (or an edge) is simply its two endpoints, and the
boundary of a 2-simplex (triangle) is a linear combination of its three edges. That
is,

∂(< p0, p1 >) =< p1 > − < p0 >

and,

∂(< p0, p1, p2 >) = < p1, p2 > − < p0, p2 > + < p0, p1 >

= < p1, p2 > + < p2, p0 > + < p0, p1 >

We can take boundaries of chains by extending this definition linearly. Notice that
if a simplex is triangulated, the boundary of the chain of all elementary simplices
of the triangulation is simply the boundary of the simplex since all the interior
boundaries cancel in the definition. It is straight-forward to check that a boundary
of a k-chain has no boundary itself (i.e., ∂∂ = 0).

Now consider an n-simplex S with a triangulation in which each vertex is labeled
by elements from {0, 1, . . . , n}. Denote the label of a vertex q by L(q). We say that
the labeling L is Sperner (or that S is equipped with a Sperner labeling L) if the
following two conditions hold:

(1) Each corner of the simplex S is labeled distinctly.
(2) The label of any vertex within the triangulation that lies on a facet of S

matches one of the labels of the corners of that same facet.
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We say that a labeling of an elementary simplex in the triangulation is complete
if each of its vertices takes on a distinct label.

Figure 1. Sperner-labeled Triangulation

Figure 2. A Completely Labeled Simplex

3. Sperner’s Lemma

Theorem 3.1 (Sperner’s Lemma). Given any triangulation of an n-simplex which
is Sperner-labeled, there exists an odd number of completely labeled elementary n-
simplices. In particular, there exists at least one such elementary simplex within
the triangulation.

Before giving the general case proof, I will discuss some low dimensional cases.
The one-dimensional case is used to prove the two-dimensional case, which will be
generalized in an inductive way to hold for n-dimensional simplices.
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3.1. The One-Dimensional Case. In this trivial case of the Sperner Lemma,
there is an interval of the real line which has been subdivided into k−1 subintervals
. The k vertices are labelled with either 0 or 1, with the stipulation that the
boundary points are labelled differently. Without loss of generality, we can assume
that the interval is [0,k-1] with the vertices placed at integer points. I will denote
the subintervals of the form [i, i + 1] ⊂ [0, k − 1] by the symbol σi. They are the
1-simplices in the triangulation of [0, k − 1]. Let the (a, b)-simplices denote the
σi which are labelled a on one vertex and b on the other, with no restriction on
ordering. Sperner’s Lemma states that the number of (0,1)-simplices are odd.

Figure 3. Sperner’s Lemma in one dimension

Proof. For each σi, let F (σi) be the number of endpoints of σi which are labelled
by zero. F takes the values 0,1 and 2. The proof proceeds by calculating the value
of

∑
i F (σi) in two ways. First we note that this value is equal to the number of

(0,1)-simplices, plus twice the number of (0,0)-simplices. In particular, it is the
number of (0,1)-simplices plus an even number. We can compute the sum in a
different way by noticing that every vertex in the interior of [0, k − 1] which is
labelled zero contributes 2 to the sum. Therefore, the sum is also twice the number
of vertices labelled zero inside the interval, plus one for the one boundary vertex
which is labelled by zero. Since this second method of counting shows that the sum
is odd, the number of (0,1)-simplices must also be odd. �

3.2. The Two-Dimensional Case. We now consider a simplicial subdivision (tri-
angulation) of a 2-simplex, K, which is just a triangle (see figures 1,2). If the vertices
in the triangulation are Sperner labelled by 0,1, and 2, Sperner’s Lemma states that
there exists an odd number of (0,1,2)-simplices.

Proof. The strategy of the proof is exactly the same as before. Denote the 2-
simplices in the triangulation by σi. We define a function F on the σi by setting
F (σi) to be the number of (0,1)-simplices of the three edges of σi. The first way to
compute

∑
i F (σi) goes as follows:∑

i

F (σi) = 1× (#{(0,1,2)-simplices})

+2× (#{(0,1,0)-simplices})
+2× (#{(0,1,1)-simplices})

Notice that this shows that if
∑

i F (σi) is odd, then the number of (0,1,2)-simplices
must also be odd. The second way to calculate this quantity will show that it is
indeed odd. The method is again to use the fact that any (0,1)-simplex on the
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interior of K is a face of exactly two 2-simplices of the triangulation of K. We have
that: ∑

i

F (σi) = 2× (#{(0,1)-simplices in int(K)})

+1× (#{(0,1)-simplices on ∂K})

By the conditions of a Sperner-labelling, only one edge of K can contain (0,1)-
simplices. This edge meets the conditions of the one-dimensional case of Sperner’s
Lemma, and so applying the previous result, we have that the number of (0,1)-
simplices on the boundary of K is odd. This shows that in fact, the number of
(0,1,2)-simplices in the triangulation must be odd. �

3.3. The General Case. The proof of the two-dimensional case generalizes in a
natural way to n dimensions. We have already established that Sperner’s Lemma
is true for one dimensional simplices. Suppose that it holds for n − 1 dimensions;
we would like to see that this implies the lemma for n-simplices. Sperner labelings
are formulated in a way which is very conducive to using induction because each
facet of a triangulated, Sperner-labeled n-simplex is an n−1-simplex which inherits
triangulation and a Sperner-labeling.

Let K be a triangulated n-simplex with a Sperner labeling. Denote the elemen-
tary n-simplices in the triangulation by σi. Define F on the σi by setting F (σi) to
be the number of (0, 1, . . . , n− 1)-simplices of the n + 1 facets of σi. As before, we
compute

∑
i F (σi).

First, ∑
i

F (σi) = 1× (#{(0,1,. . . ,n)-simplices})

+2× (#{(0,1,. . . ,n-1,0)-simplices})
+2× (#{(0,1,. . . ,n-1,1)-simplices})
...
+2× (#{(0,1,. . . ,n-1,n-1)-simplices})

The second way of computing
∑

i F (σi) will show that it is odd. Using the
fact that every (0, 1, . . . , n − 1)-simplex on the interior of K is a face of precisely
2 n-simplices in the triangulation of K (this can be shown by simple geometric
arguments): ∑

i

F (σi) = 2× (#{(0,1,. . . ,n-1)-simplices in int(K)})

+1× (#{(0,1,. . . ,n-1)-simplices on ∂K})

Now only one facet of ∂K contains (0, 1, . . . , n − 1)-simplices, and that number is
odd by induction, and so the number of (0, 1, . . . , n)-simplices is odd.

3.4. A Generalized Version of Sperner’s Lemma. I will now discuss a gen-
eralization of the lemma, which can be used to prove the Fundamental Theorem
of Algebra. None of the other applications rely on the generalization however.
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Sperner’s Lemma can be generalized for any space which admits a triangulation
(not just on a triangulated simplex) with no restrictions on how the vertices are
labeled. For an introductory treatment of these spaces (simplicial complexes), see
Armstrong ([2]). The generalization provides an interesting perspective because it
connects the lemma with the topology and orientation of the space.

Definition 3.2. Let q0, q2, . . . , qk be a given ordered list of non-negative inte-
gers. If the q0, . . . , qk happen to be a permutation of 0, 1, . . . , k, then we define
N(q0, q1, . . . , qk) to be +1 if the permutation is even, and -1 if the permutation is
odd. If it is not a permutation, then define N(q0, q1, . . . , qk) to be zero.

For example,

N(0, 1, 2, 3) = N(1, 2, 0, 3) = N(1, 0, 3, 2) = 1

N(0, 1, 3, 2) = N(3, 0, 1, 2) = N(0, 2, 1, 3) = −1

N(0, 0, 1) = N(2), N(1, 2179) = 0

Now suppose ∆ =< p0, p1, . . . , pk > is an oriented k-simplex, and each vertex is
assigned a label, L(k). We can define N for oriented simplices as:

N(∆) = N(L(p0), L(p1), . . . , L(pk))

N can also be extended to n-chains linearly, so if C =
∑

j αj∆j , then N(C) =∑
j αjN(∆j).

Theorem 3.3 (Generalized Sperner). Suppose C is a labeled k-chain of k-simplices
with labels chosen from {0, 1, . . . , k}. Then,

N(C) = (−1)kN(∂(C))

Remark 3.4. Why is this a generalization of Sperner’s Lemma? In the case that
C is a triangulated n-simplex equipped with a Sperner-labeling, let F k denote the
k-face of C (with inherited triangulation and labeling) with corner vertices labeled
with 0, . . . , k. By the requirements of the Sperner-labeling, C = Fn. Applying the
generalized lemma repeatedly, we have:

N(C) = N(Fn) = ±N(Fn−1)) = ±N(Fn−2)) = · · · = ±N(F 0)) = ±1

And this is enough to show the existence of a completely labeled elementary n-
simplex in the triangulation.

Proof. This proof is based on the proof found in [3]. By linearity, it suffices to show
that the theorem holds for just one k-simplex ∆ =< p0, p1, . . . , pk >. That is, we
would like to see that the following is true:

N(q0, q1, . . . , qk) = (−1)k
k∑

j=1

(−1)jN(q0, . . . , qj−1, qj+1, . . . , qk)

where (q0, q1, . . . , qk) is the labeling on the vertices. We can associate a ’permuta-
tion’ matrix with the labeling (q0, q1, . . . , qk) . Let P be this (k+1)×(k+1) matrix
defined by letting Pij = 1 if qi = j, and Pij = 0 if not. Since N is defined to be
equal to the sign of a permutation, it immediate that det(P ) = N(q0, q1, . . . , qk).
Of course, P is not really a permutation if (q0, q1, . . . , qk) is not a permutation, but
the equality between the determinant and N still holds.
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Now we construct a new matrix P ′ which is equal to P except that we replace the
last column by all ones. Note that (−1)k

∑k
j=1(−1)jN(q0, . . . , qj−1, qj+1, . . . , qk) is

simply the determinant of P ′ by expanding by the last column.
It now suffices to show that det(P ) = det(P ′). But this is true since we can

reduce P to P ′ by adding all of the columns of P to its last column.
�

4. Applications

Even though Sperner’s lemma is proved in a discrete setting, it is often applied
in continuous situations. The general strategy used in the following sections is:

(1) Triangulate a compact and convex region K ⊂ Rn.
(2) Label the vertices of the triangulation in some clever way.
(3) Apply Sperner’s Lemma to find a completely labeled simplex.
(4) Take finer and finer triangulations of the space, and use continuity argu-

ments to deduce some result in the limiting case.
The three main applications that will be discussed are the Brouwer Fixed-Point the-
orem, the Cake-Cutting/Rental Harmony problem, and the Fundamental Theorem
of Algebra.

4.1. The Brouwer Fixed Point Theorem. The celebrated Brouwer Fixed Point
Theorem is a surprising result which was first proved by L. Brouwer in the early
1900s. Informally, the theorem is sometimes explained using a cup of coffee which
is being stirred (in a continuous fashion). The theorem states that after stirring,
there is at least one point of the coffee which has returned to its original position
before stirring. More formally,

Theorem 4.1 (Brouwer Fixed-Point Theorem). Let K be a compact and convex
set in Rn. Suppose f : K → K is a continuous map. Then there exists some x ∈ K
such that f(x) = x.

In fact, using degree theory arguments, the theorem can be generalized to sets K
which are homeomorphic to a disk, but I will not discuss this generalization here.
The general procedure for the proof of the Brouwer Fixed-Point theorem is to first
show that it is true for n-simplices (with the aid of the Sperner Lemma). Then it
is a simple task to extend the result to the general case.

The proof of Brouwer’s Fixed Point Theorem is nonconstructive 1. Suppose for
the sake of contradiction that there exists no fixed point of of f . We can define a
continuous retraction r(x) from K to its boundary ∂K by the following. We take
a ray originating f(x) in the direction pointing to x. Let Tx be the smallest t ≥ 1
such that f(x)+t(x−f(x)) ∈ ∂K. Then define r(x) = f(x)+Tx(x−f(x)). Observe
that r(x) is well-defined since x 6= f(x) by assumption. It is also clear that r(x)
fixes any point on the boundary, and that it is continuous, by the continuity of f .
Hence it is a continuous retraction of K to its boundary. The following theorem
will show that such an r(x) cannot possibly exist.

Theorem 4.2 (Retraction Mapping Theorem). Let K ⊂ Rn be compact and convex
(and nonempty). There is no continuous retraction from K to its boundary ∂K.

1Interestingly, in his later years, Brouwer became a promoter of the Intuitionist movement,
which did not accept nonconstructive proofs. Brouwer actually renounced his own theorem.
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Figure 4. Retraction from K to ∂K

Proof. (based on [6]) For simplicity of exposition, I will prove it for n = 2, but
the proof generalizes in a straight forward manner to arbitrary dimensions. The
procedure is to first show that this is true if K is an equilateral triangle (say, with
side lengths equal to 1) and then use the result to jump to the general case.

Consider a continuous map g : K → ∂K which is the identity when restricted to
the boundary. Label the vertices of K by the numbers 0, 1 and 2. For any x ∈ K,
we may associate a labeling of x by setting S(x) to the label of the vertex which is
closest to g(x) (ties can be broken arbitrarily). Notice that on the boundary of K,
any point is labeled with the label of one of the vertices which determine the edge
on which it lies, since K is equilateral.

Since g is continuous, there exists some δ > 0 such that x, y ∈ K satisfying
|x − y| < δ implies that |g(x) − g(y)| <

√
3

4 . We now triangulate K so that for
any triangle ∆ in the subdivision, all edge lengths of ∆ are less than

√
3

4 . This
triangulation, inherits a Sperner labeling from S(x), and so we can apply Sperner’s
lemma, which guarantees the existence of at least one small triangle within the
triangulation whose vertices are labeled 0,1,2. Since all of the vertices in this
triangle are within δ of each other, for any pair of these vertices, {x, y}, we have
that |g(x) − f(y)| <

√
3

4 . This inequality together with the fact that each vertex
is labeled differently implies that the retraction g maps every pair of these vertices
to points on one edge of K, and every pair of points gets mapped to a different
side. Since this is impossible, we have the desired contradiction which shows that
g cannot be continuous.

Now suppose in the general case that K is compact and convex, and g : K → ∂K
is a continuous retraction. By the Heine-Borel theorem, K is bounded, and so one
can find a large enough equilateral triangle Γ which contains K. Choose a point
p ∈ int(K). For points in Γ \ int(K), one can use p to define a map F to the
boundary ∂Γ by the following. If x ∈ Γ \ int(K), set F (x) to be the point on
∂Γ where the ray originating at p going in the direction of x intersects ∂Γ. Note
that F is well-defined since p /∈ Γ \ int(K), and F is continuous. Now we can
extend F to be a function φ over all of Γ by mapping a point x ∈ K to F (g(x)).
This extension of course remains continuous by continuity of g. φ is therefore a
continuous retraction from Γ to ∂Γ constructed from g. Applying the above result
shows that φ cannot exist. Consequently, g cannot exist. �
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An interesting point of note is that it was shown in 1974 by Yoseloff ([5]) that
Brouwer’s Fixed-Point Theorem actually implies Sperner’s Lemma, so the state-
ments are in fact equivalent. In [4], Jarvis and Tanton give a proof of the well-
known Hairy Ball theorem using the Sperner Lemma, which is often proved via the
Brouwer Fixed-Point Theorem. This theorem states (informally) that it is impos-
sible to comb the hairs on a fuzzy ball in a continuous way such that each hair is
tangent to the surface of the ball.

4.2. Cake Cutting. The Cake Cutting problem is an example of a fair-division, or
dispute resolution question. These types of problems often deal with the problem of
dividing some quantity among several people, so that everyone remains happy with
the outcome. Similar problems include chore-division, where one seeks to divide a
list of chores in a fair way, and rental harmony, where n people rent a house with
n rooms, and one seeks to somehow partition the rent in some way such that each
person prefers a different room. In these problems, one would like to know when a
solution exists, and if a solution does indeed exist, how can it be found?

The Cake-Cutting problem, in particular, was introduced in 1947 by Steinhaus.
Suppose that there is a rectangular cake that must be distributed among n people.
To cut the cake, we can use n−1 knives to make n−1 cuts parallel to the left edge of
the cake. Everyone may have differing opinions on what makes a slice valuable. For
example, one person might prefer a slice with more yellow frosting, or one person
might just prefer a really large slice. Yet another person may prefer a slice with
fruit. The goal is to cut in a way so that each person is appeased. In the end, we
would like a person to be able to measure the worth of a slice of cake by their own
scale, independent to how the others measure theirs. In order for solutions to exist
however, we must set some assumptions on how people compare the cake slices.

Definition 4.3. Suppose a cake is partitioned into slices by some cut-set. We say
that a person prefers some given slice, if he thinks that no other slice in the cut-set
is better. Notice that anybody’s preferred slice is independent of the preferences of
other people. Furthermore, this definition guarantees that everyone always prefers
at least one slice given any cut-set.

We assume the following:

(1) People will always choose any slice over nothing at all. That is, each of
the slices is in some way minimally acceptable to everyone, and everyone is
hungry.

(2) We also make the reasonable assumption that if a person prefers some slice
belonging to a convergent sequence of cut-sets, then that person prefers the
same slice in the limiting cut-set. Note that convergence is a notion that
makes sense as any sequence of cut-sets can be thought of as a sequence of
points in Rn.

Observe that any way of cutting a cake is fully determined by the relative lengths
of the pieces. Therefore, we can represent such a ’cut-set’ by an n-tuple of non-
negative real numbers. Now, without loss of generality, we can assume that the
length of the cake is 1, and so a cut-set is expressible as (x1, x2, . . . , xn) ∈ [0, 1]n

with
∑n

i=1 xi = 1, where the size of the kth slice is given by xk. The space of all
possible cut-sets therefore forms an (n − 1)-simplex in Rn. We are now ready to
prove the theorem.
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Figure 5. Cut-Set of a Cake

Theorem 4.4 (Simmons). With the above assumptions, there exists a way to divide
the cake such that each person prefers a different piece .

Proof. I will prove the theorem in the case that the cake must divided amongst 3
people named Abigail, Bob, and Chris. The task is to partition a cake of length 1,
with 2 cuts. As above, the space S of all possible cut sets is given by:

S = {(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 1 and all xi ≥ 0}

Geometrically, S is the triangle formed by the intersection of the plane x+y+z = 1
and the first octant of R3.

We now give S a triangulation and give each vertex a preliminary labeling by
the letters A,B,C, corresponding to Abigail, Bob and Chris respectively. The
requirement on this preliminary labeling is that each triangle in the subdivision
must be an (A,B,C)-simplex. It is easy to see that such a labeling can be realized.

Given this labeling and triangulation, we can now construct another labeling on
the triangulation by the numbers 1,2 and 3. We say that the owner of a vertex
is the person who corresponds to the label of the vertex given by the preliminary
labeling. For example, if some vertex is labeled B, then Bob is the owner of that
vertex. The new labeling is constructed in the following way. Let v be any vertex
in the triangulation. v describes some cut-set, so we ask its owner which slice (1,2
or 3) in this particular cut-set he or she prefers, and relabel v with this number.

The claim is that this new labeling of S is actually a Sperner labeling. First,
at the vertex (1, 0, 0) ∈ S, we see that slice 1 contains the entire cake, and slices 2
and 3 are empty. By our first assumption, this implies that the owner of (1, 0, 0)
will definitely choose slice 1 over the others. Therefore, (1, 0, 0) is labeled by 1.
Similarly, (0, 1, 0) is labeled by 2, and (0, 0, 1) is labeled by 3. Next, observe that
for vertices on each edge of S, there is always a coordinate equal to zero, which
means that one of the slices is empty, so that the owners of these vertices always
choose the other slices. Thus, each side of S is only labeled by the labels assumed
by its endpoints. And this shows that the labeling satisfies the Sperner condition.

Applying Sperner’s Lemma, we obtain the existence of a (1, 2, 3)-simplex ∆ in
the triangulation of S. Recall that by the preliminary labeling on S, ∆ is also an
(A,B,C)-simplex. If ∆ is small, then this means that we have found 3 cut-sets
that are very similar, where Abigail, Bob and Chris chose different slices.
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To get just one cut-set where they choose different slices within the cut-set, we
consider this procedure for a sequence of finer and finer triangulations of S. Since
each triangle is compact and their sizes decrease according to the sequence, one
can find a convergent subsequence of triangles, which, in the limit, become just one
point x. By our second assumption, x is a cut-set for which Abigail, Bob and Chris
each prefer a different slice of the cake.

�

One point which I have not adequately explained in this proof is how to obtain
a sequence of triangulations which get progressively finer. For a two-dimensional
S (the case of three people), it is fairly easy to see how to obtain one. For n-
dimensions, one method that works is called barycentric subdivision. See [2] for an
introduction to barycentric subdivision. Essentially, this method takes a simplicial
complex K and subdivides by adding in the barycenters of all the simplices in K
(in all dimensions) as new vertices, and adding new simplices as necessary to form
a new simplicial complex K1. If µ(K) is the maximum over the diameters of all
the simplices in K, and the dim(K) = n, then it can be shown that

µ(K1) ≤ n

n + 1
µ(K)

This shows that with successive barycentric subdivisions, the diameters of the sim-
plices do indeed approach zero. Using barycentric subdivisions, the above solution
to the Cake-Cutting dilemma can be easily extended to dividing a cake for an
arbitrary number of people.

In [3], Su gives a solution to a similar problem, called the Rental Harmony
problem, which is more difficult. In it, one is presented with the challenge of
partitioning house rent among n people who wish to rent a house with n rooms
in a fair way. As in the cake-cutting problem, each person may have their own
preferences - one might prefer a good view, while another might want a closet for
example. The assumptions made about the problem are similar to the ones made
in Cake-Cutting, but the problem has a new twist. The main difference is that the
rooms are indivisible, and the rents are attached to specific rooms. Su’s elegant
solution involves applying Sperner’s lemma not on a triangulation of the space of
all possible rental payment assignments, but its dual.

4.3. The Fundamental Theorem of Algebra. The Fundamental Theorem of
Algebra is an important result about polynomials. It says that the field C of
complex numbers is algebraically closed. In other words, it guarantees the existence
of roots for every non-constant complex polynomial and allows us to express each
one as a product of linear terms. Since Gauss submitted the first proof in 1799 as
his doctoral dissertation, it has opened itself to a variety of different attacks.

While all of its proofs necessarily contain elements of analysis, many of the
proofs carry the influence of another area of mathematics. For example, there
is a proof which one studies in Galois Theory. Or, one might consult the proof
from algebraic topology which uses results from the theory of fundamental groups.
Sperner’s lemma provides a nice combinatorial solution based on a discretization
of the winding number proof from complex analysis. For the proof, standard facts
from real and complex analysis will be assumed to be true (see Ahlfors [7]).
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I will first establish some preliminaries, then give a proof of the theorem based
on [3]. We first partition the complex plane into three tridrants. For j = 0, 1, 2, let:

Rj = {z ∈ C :
2π

3
j ≤ arg(z) <

2π

3
(j + 1)}

Lemma 4.5. Suppose zj ∈ Rj for j = 0, 1, 2, and suppose that for some given ε,
|zj − zk| < ε holds for j, k ∈ {0, 1, 2}. Then for each j, |zj | < 2√

3
ε

Proof. Without loss of generality, consider z0. Since z1, z2 are in different tridrants,
at least one of them, say z1, satisfies:

| arg(z0)− arg(z1)| ≥
π

3
The point on the subspace spanned by z1 which minimizes the distance to z0 is the
projection of z1 onto this subspace. This distance ≤ |z0| sin(π

3 ). Thus,

|z0| sin(
π

3
) ≤ |z0| sin(| arg(z0)− arg(z1)|) ≤ |z0 − z1| < ε

Rearranging, we have:

|z0| ≤
ε

sin(π
3 )

=
2√
3
ε

�

Theorem 4.6 (Fundamental Theorem of Algebra). Let p(z) = zn + an−1z
n−1 +

· · · + a0 be a monic polynomial with degree n ≥ 1. Then there exists some z0 ∈ C
such that p(z0) = 0.

Proof. Define a function (labeling) over the complex plane, φ : C → {0, 1, 2} where
φ(z) = j if p(z) ∈ Rj . Now for a large enough disk D about the origin, we have
that p(z) ∼ zn on the boundary of K (specifically, the winding numbers of p(z)
and zn as z moves counterclockwise along the boundary of the disk are the same).

By viewing C as R2, we can form a ’triangulation’ of D by inscribing a polygon
inside its boundary and forming a triangulation of the polygon. We can get closer
and closer to filling out the entire disk by forming polygons with more edges and
with finer triangulations. Of course any triangulation of D inherits a labeling from
φ (of course this labeling need not be Sperner, but this will not be a problem
as we will be applying the generalized form of the lemma). For a fine enough
triangulation, P , of D, zn winds the boundary of P around the origin n times. By
the labeling, there are (0,0),(1,1),(2,2),(0,1),(1,2) and (2,0)-simplices which make
up the boundary of P . Only the (0,1)-simplices contribute to N(∂P ), and each
time zn winds the boundary around the origin, we find exactly one (0,1)-simplex,
and so:

N(∂P ) = n

Per the usual progression, we form a sequence Gk (k = 1, 2, . . . ) of triangulations
which get finer. Here we require each triangle in Gk to have diameter < 1

k . For
each Gk, applying the generalized Sperner lemma (with k = 2), there exists some
completely labeled triangle inside G. By the lemma, this means that for each vertex
zj of this triangle, |p(zj)| < 2√

3k
.

Let y be an accumulation point of this sequence of triangles. We can make the
value of |p(z)| arbitrarily small by selecting z close enough to y, and so by continuity
of polynomials, p(y) = 0.

�
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The proofs of the Sperner Lemma which I have presented are not constructive,
but there exist some proofs which give an explicit algorithm for locating the com-
pletely labeled triangles in a triangulated simplex (See Su, or Jarvis and Tanton).
In light of this, the above proof of the fundamental theorem of algebra actually
provides a computational framework for factoring a polynomial over the complex
numbers (finding an approximate factorization at least). An algorithm would in-
volve hierarchical subdivisions of a large disk in the complex plane, and would
iteratively ”zoom in” on a root with controllable error. 2

5. Conclusion

The elegant proofs of the Brouwer Fixed-Point theorem and others show that the
Sperner Lemma is not so innocent after all. It is a powerful tool that can be used in
existence proofs. In constructive proofs of the lemma, Sperner even provides clean,
elegant algorithms for solving the problem at hand. I mentioned the possibility of
an algorithm for finding complex roots of a polynomial. In other works, the lemma
has been used as a computational basis for many other problems, from finding fixed
points of functions, to determining critial points in computational fluid dynamics.

Its strength perhaps lies in its ability to take facts which are true in discrete
cases and take them to continuous scenarios. Consequently, it allows us to work
with topological spaces in a purely combinatorial way.
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7. L. Ahlfors, Complex Analysis, International Series in Pure and Applied Mathematics.

8. J. Vick, Homology Theory, Graduate Texts in Mathematics, 145. Springer-Verlag, New York,
1994.

E-mail address: jhuang11@math.stanford.edu

2A root-finding algorithm based on the Sperner lemma has never been implemented to my

knowledge. Intuitively, it would have slower run time, since it must search for completely labeled

simplices in dense triangulations, but in theory, its accuracy would not be very sensitive to the
degree of the polynomial, whereas many root-finding algorithms lose their precision very fast as

deg(p(z)) gets high.


