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ABSTRACT

While vocal tract resonances (VTRs, or formants that are defined as
such resonances) are known to play a critical role in human speech
perception and in computer speech processing, there has been a lack
of standard databases needed for the quantitative evaluation of au-
tomatic VTR extraction techniques. We report in this paper on our
recent effort to create a publicly available database of the first three
VTR frequency trajectories. The database contains a representative
subset of the TIMIT corpus with respect to speaker, gender, dialect
and phonetic context, with a total of 538 sentences. A Matlab-based
labeling tool is developed, with high-resolution wideband spectro-
grams displayed to assist in visual identification of VTR frequency
values which are then recorded via mouse clicks and local spline in-
terpolation. Special attention is paid to VTR values during consonant-
to-vowel (CV) and vowel-to-consonant (VVC) transitions, and to speech
segments with vocal tract anti-resonances. Using this database, we
quantitatively assess two common automatic VTR tracking tech-
niques in terms of their average tracking errors analyzed within each
of the six major broad phonetic classes as well as during CV and VC
transitions. The potential use of the VTR database for research in
several areas of speech processing is discussed.

1. INTRODUCTION

Acoustic resonances in the human vocal tract during speech produc-
tion are perhaps the best known and the most commonly used para-
meters in characterizing the perception of speech sounds, especially
for vowels. In this case, the resonances are also called “formant fre-
quencies”, which are spectral prominences that can be computed di-
rectly from speech waveforms. However, when anti-resonances are
present, as in most consonantal sounds, the underlying resonance
frequencies are often obscured. However, it is the resonance fre-
quencies, instead of the frequencies at which spectral prominences
occur, that determine the temporal trends of CV and VC formant
transitions (a classic concept known as formant “loci” [1] and have
perceptual relevance.)

Due to the importance of the vocal tract resonance (VTR), nu-
merous automatic VTR or formant trajectory estimation methods
have been developed (e.g., [5, 8, 6, 3, 9, 10]) over past few decades.
Results of many of these methods have been applied to speech process-
ing applications (e.g., [6, 2, 9]). Despite this, there has been a con-
spicuous lack of standard databases that are needed for quantitative
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evaluation of automatic VTR estimation methods. As with automatic
speech recognition, standard databases of VTRs as a “ground truth”
reference are critical for objectively evaluating different estimation
algorithms and for improving the algorithms’ qualities. However,
VTR databases are difficult to construct due to extensive human ex-
pertise required for accurately identifying resonances based primar-
ily on spectrographic analysis. The difficulty is especially true for
many consonantal sounds where the VTRs are often not directly vis-
ible from the spectrograms, as well as for some vowels and semi-
vowels (e.qg., /y/, liyl, Iul, Iwl, Ir/) where formants can be very close
to one another.

In this work, we attempt to overcome these difficulties by care-
fully applying human expertise, in combination with spectral analy-
sis with extrapolation, to visually identify and record the VTR fre-
quencies (F1, F2, and F3) for all classes of speech sounds in a sub-
set of the TIMIT database. During the preparation of our “manu-
ally” labeled VTR database, we especially focus on VTR values dur-
ing consonant-to-vowel (CV) and vowel-to-consonant (VC) transi-
tions, and on speech segments involving vocal tract anti-resonances.
Where the spectral prominences (i.e., “dark” or high-energy bands
in the spectrogram displays) do not coincide with predicted reso-
nances for many consonantal segments, we exploit prior knowledge
of nominal VTR values [2], and use the visible VTR transitions into
and out of adjacent vocalic segments to perform judicious extrapola-
tion or interpolation. We also examine the overall spectral properties
across the entire sentence, correlating the VTR values for the same
phonetic units in the sentence and adjusting them when appropriate
after taking into account contextual influences. Further, we exploit
known effects of anti-resonances (or zero frequencies) in splitting
the VTRs of nasalized vowels for example.

The paper is organized as follows. In Section 2, we describe
the selection of speech data for the VTR database preparation. The
VTR trajectory labeling process is presented in Section 3, including
the labeling tool development and human knowledge sources used.
Cross-labeler variation results are shown in Section 4. Results of
a preliminary objective assessment of two automatic VTR tracking
algorithms using the labeled VTR database are provided in Section
5.

2. DATA SELECTION

The VTR database is composed of 538 utterances selected as a rep-
resentative subset of the well-known and widely-used TIMIT cor-

INot surprisingly, many existing formant or VTR tracking algorithms
tend to make errors for these speech sounds, including transitions into and
out of these sounds.



pus. TIMIT contains a total of 6300 utterances contributed by 630
speakers from 8 major dialect regions of the United States. Each
speaker speaks 10 utterances. The prompts for the 6300 utterances
consist of 2 dialect “shibboleth” sentences (SA), 450 phonetically-
compact sentences (SX), and 1890 phonetically-diverse sentences
(SI). TIMIT is divided into a training set and a test set. The for-
mer contains 4620 utterances, and the latter contains 1344 utterances
where 192 out of 1344 utterances are specially chosen to form a core
test set.

In preparing our VTR database, we selected a total of 538 utter-
ances (SX and Sl sentences only) and labeled F1, F2, and F3 trajec-
tories for each 10-msec frame. The selected utterances cover all 192
utterances from the core test set and 346 utterances from the training
set. There are 24 speakers in the 192-utterance test subset with 5 SX
and 3 Sl sentences for each speaker, and 173 speakers in the 346-
utterance training subset with each speaker contributing 1 SX and 1
Sl sentences. In this way, the selected 538 utterances well represent
a balanced selection of speaker, dialect, gender and phoneme. These
utterances also contain rich phonetic contexts and thus are a good
collection of acoustic-phonetic phenomena that exhibit interesting
VTR variations.

3. VTR TRAJECTORY LABELING

To facilitate the process of VTR trajectory labeling in the database
preparation, we first obtained initial trajectory estimates based on an
automatic VTR tracking algorithm as described in [3].> Based on
these initial estimates, extensive manual correction is performed to
provide accurate VTR labeling.

A Matlab GUI tool has been developed to enable VTR correc-
tion and manual labeling. A screen shot of this tool is shown in
Fig.1. The tool shows the waveform and wideband spectrogram of
a speech signal together with its word- and phone-level transcrip-
tions. The phone boundaries are marked also in the spectrogram to
facilitate labeling. The spectrogram can be zoomed in and out for
detailed or coarse spectrographic information. A contrast bar is also
available to tune the intensity contrast of the spectrogram to help
make decisions on the VTR values. To correct trajectories, a labeler
simply needs to click on the desired points and a local spine inter-
polation is implemented in the tool that automatically smoothes out
the modified trajectory to the visual satisfaction of the labeler.

Figs. 2 and 3 are two example sentences to illustrate the correc-
tion and labeling process and results. Blue dashed lines (F1, F2, and
F3, respectively) are the initial, automatic VTR trajectory estimates
described in [3] marked as “MSR” in legend. Manually corrected
versions of them are shown as red solid lines (with 20 to 30 point
corrections per sentence by manual mouse clicks followed by auto-
matic local spline smoothing). For comparison purposes, we also
show the automatic F1/F2/F3 tracking results, as green solid lines,
from the popular open source tool WaveSurfer, which uses the same
algorithm for VTR/formant tracking as ESPS/xwaves introduced in
[8].2 For most of the vocalic portions in the utterances where the
“dark/high energy” bands in the wideband spectrograms are clearly
identifiable, both automatic trackers give rather accurate results. Ex-
ceptions are occasional errors in 1) F3 for /r/ or /er/ when F3 is low
and close to F2; 2) F2 for /uw/ or /w/ when F2 is low and close to F1;
and 3) F2 and/or F3 for /y/ and /iy/ when they are close to each other.

2This algorithm is based on aversion of the structured speech model con-
sisting of continuous-va ued hidden dynamics and a piecewise-linearized pre-
diction function from resonance frequencies and bandwidths to LPC cepstra

3Software download site: http://www.speech.kth.se/wavesurfer.

These errors occur mostly during relatively rapid formant transitions.

More difficult situations arise for the frames where there is a
lack of spectral prominences or when spectral prominences do not
coincide with predicted resonances for consonantal segments. In this
case, nominal consonant-specific values of VTRs (Chapter 10 in [2])
are provided as crude references for male speakers as a guideline.
These values are increased by approximately 20% for female speak-
ers. To determine the final labels, we also make use of the visible
VTR transitions into and out of adjacent vocalic segments to extrap-
olate to the consonantal VTR “loci”. “Velar pinch” patterns (F2 and
F3 coming together) are identified and used for labeling F2 and F3
values related to velar consonants (/k/, /g/, /ng/) in the front-vowel
context. The overall spectral properties across the entire sentence
with a fixed speaker are exploited to equalize the VTR values for the
same phonetic units in the sentence; adjustments may be made based
on analysis of contextual effects. For nasal consonants or nasalized
vowels, the “pole-zero-pole” pattern in their spectra is analyzed if
such a pattern exists. In this case, the final VTR values may be deter-
mined by the frequencies where spectral valleys instead of spectral
peaks occur, especially if such values are consistent with the nominal
values based on prior knowledge.* Examples of some of the above
analyses and decisions during the VTR correction/labeling process
have been included in Figs. 2 and 3.

4. CROSS-LABELER VARIATIONS

The VTR labeling effort of the database is distributed among several
labelers. A problem that naturally arises is the possible inconsistency
among them. In difficult cases where the VTRs in a spectrogram
are not obvious or are ambiguous, the manually labeled VTR values
from different labelers often differ from each other.

In order to assess the degree of such inconsistency, independent
pair-wise cross-labeling is performed for a subset (80 in total) of the
538 manually labeled utterances. Five pairs of labelers are made,
with each pair performing independent cross-labeling of common
16 utterances (including two utterances from separate four male and
four female speakers). The absolute difference between the two dif-
ferent labelers separated into six broad phonetic classes and into F1,
F2, and F3, averaged over all frames for each class, is listed in Table
1. The magnitude of the variation is somewhat higher than was ex-
pected, warranting additional checking for possible labeling errors.

Classes Absolute Diff per frame (Hz)
F1 | F2 | F3
vowels 55 69 84
semivowels 68 80 103
nasal 75 112 106
fricatives 91 113 125
affricatives 89 118 135
stops 91 110 116

Table 1. Averaged pair-wise cross-labeling absolute difference per
frame for F1, F2, and F3 and for each of the six broad phonetic
classes (in Hz).

4This is an example where the underlying resonances in the vocal tract
may not correlate with the spectral peaks in the speech signal.
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Fig. 1. Matlab-based GUI labeling tool for manual VTR trajectory correction and labeling.
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Fig. 2. Spectrogram of a TIMIT utterance, Hisfailure to open the store by eight cost him his job, superimposed with the F1/F2/F3 trajectories
corrected/labeled by hand (red solid lines; “Manual” in legend) and from two automatic VTR trackers. One tracker is described in [3] (blue
dashed lines; “MSR” in legend), and the other is described in [8] (green solid lines; “Wavesurfer” in legend).

5. COMPUTING ERRORSIN AUTOMATIC TRACKING Classes MSR WaveSurfer

ALGORITHMS FL|F2 | F3 | FL|F2]|F

vowels 64 105 | 125 70 94 154

The 538 manually labeled utterances with F1, F2, and F3 trajectories semivowels || 83 | 122 | 154 | 89 | 126 | 222
in the VTR database described above can serve as a basis for quan- nasal 67 | 120 | 112 || 96 | 229 | 239
titatively computing the errors produced by existing VTR tracking fricatives 129 | 108 | 131 || 209 | 263 | 439
algorithms. The labeled trajectories are used as the references for affricatives || 141 | 129 | 149 || 292 | 407 | 390
determining the errors. We selected the “MSR” algorithm in [3] and stops 130 | 113 | 119 ) 168 | 210 | 286

the “WaveSurfer” algorithm (footnote 3) for analysis; the resulting
errors are listed in Table 2. The errors are defined to be the ab-
solute VTR difference between the reference and the estimated val-
ues averaged over all frames for a particular broad phonetic class.
We have used six such broad classes defined in the TIMIT data-
base, with all segment boundaries made available for frame aver-
aging. Compared with the inter-labeler variation shown in Table 1,
the difference in the errors made by the two algorithms for the sono-
rant speech classes (vowels, semivowels, and nasals) appears to be
relatively minor. Greater differences occur for the obstruent speech
classes (fricatives, affricatives, and stops).

We also examined the errors of the two algorithms when limiting
the error-counting regions to only the CV and VC transitions. The
“transition regions” are fixed to be 6 frames, with 3 frames to the
left and 3 frames to the right of CV or VC boundaries defined in the
TIMIT database. The detailed results are listed in Table 3.

As a control experiment, we have corrected and labeled a small
subset (about 10%) of VTR trajectories which are initialized from
the Wavesurfer’s outputs instead of MSR algorithm’s outputs. The
differences shown above are reduced, mainly for vowels and for

Table 2. VTR tracking errors (in Hz) measured by averaging ab-
solute VTR differences between the reference and estimated values
over all frames for a particular broad phonetic class. Both the al-
gorithms in [3] (MSR) and for the WaveSurfer algorithm are used.
Results are listed for F1, F2, and F3, and for each of the six phonetic
classes separately.

semivowels. Definite conclusions can not be drawn until after a
larger set of the data is labeled.

6. SUMMARY AND DISCUSSION

In this paper, we report on the development of a soon-to-be publicly
available database in which the VTR, or formant, trajectories are la-
beled. We plan to have the database, after further careful verification
and correction (which is currently on-going at MSR), be posted on-
line on our webpages by the time of the ICASSP 2006 conference.
F1, F2, and F3 trajectories, at every 10-msec frame, of a represen-
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Fig. 3. Same as Figure 2, except with a different TIMIT utterance: “We always thought we would die with our boots on”.

Classes MSR WaveSurfer the generative framework [4]. With a standard database made avail-

FL | F2 | F3 || F1 | F2 | F3 able, the feature extraction techniques and recognition models can
CV transitions || 106 | 101 | 119 || 156 | 192 | 273 be better designed or beneficially initialized in automatic training.
VC transitions || 48 92 | 120 59 88 | 157 In formant-based speech synthesis, the standard database for VTR

Table 3. Same as for Table 2 except for the focus on temporal re-
gions of consonant to vowel (CV) transitions and vowel to consonant
(VC) transitions instead of on broad phone classes.

tative subset (538 sentences) of the TIMIT corpus with respect to
speaker, gender, dialect and phonetic context are labeled. The key
part of the database creation process is the development and use of
a software labeling tool based on high-resolution spectral and tem-
poral displays. This enables visual identification of, for example,
VTR or formant frequency values in the spectrograms, typically in
vocalic speech segments. When ambiguity arises or when no clear
“dark/high-energy bands” are visible in the spectrograms, the under-
lying resonance frequencies have to be inferred using human exper-
tise to balance a number of knowledge sources. In this paper, we
discussed major knowledge sources that guided our labeling process
while creating the VTR database, including the use of consonantal
VTR targets (or “loci”) and their gender-based adjustment, the use of
visible CV and VC transitions for extrapolation, consistency of the
within-utterance VTR targets and VTR values for the same phone,
the adjustment of targets and VTR values based on contextual influ-
ences and on possible target undershooting, the use of the distinct
“velar pinch” pattern, and the effects of nasalization on pole split-
ting.

We report in this paper an exploratory use of the database on
quantitative assessment of two common automatic VTR tracking
techniques measured by their averaged tracking errors analyzed within
each of the six broad phonetic classes as well as those during CV and
VC transitions. We also report a small-scale experiment where inter-
labeler variation (as an indicator of the quality of the database) is
examined.

A clear benefit of the established VTR database is in quantitative
and rigorous evaluation of existing and new VTR or formant tracking
algorithms and in fostering the future high-quality algorithm devel-
opment. In addition to this use in speech analysis research, other
potential uses of the VTR database can be foreseen in different areas
of speech processing as well. In particular, the importance of the res-
onances or formants in speech perception makes it desirable to incor-
porate them into speech recognition systems either as new features
in the discriminative framework [7], or as part of model structure in

trajectories in speech will also help improve the formant-generation
component of the system, especially for generating natural-style ut-
terances with varying degrees of phonetic reduction.
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