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Abstract. Topological persistence methods provide a robust framework for

analyzing large point cloud datasets topologically, and have been applied with

great success towards homology computations on simplicial complexes. In
this paper, we apply the persistence algorithm towards calculating a set of

invariants related to the cup product structure on the cohomology ring for a

space. These invariants express the extent to which cohomology classes can
be obtained as cup products of lower dimensional cohomology classes in the

space. To calculate these invariants, we apply persistence to a chain complex

associated with the Alexander-Whitney product in homology which dualizes
to be the cup product in cohomology. We show that the method is practical

to implement by showing results from an implementation for PLEX, a Matlab
toolkit which was developed for such topological computations.

1. Introduction

In the last decade, there have been many advances in the young field of Com-
putational Topology. Originally a branch of Computational Geometry, it is the
development of algorithms motivated by topological ideas with applications ex-
tending from computer science, to molecular biology. While these algorithms are
generally developed using algebraic topology as a guide towards various applica-
tions, they also have the potential to become a useful set of computational tools
for algebraic topologists.

In general, it is the objective to design methods (motivated by results from
algebraic topology) to compute topologically invariant combinatorial objects for
a space, which can then be used to show that certain spaces are not homotopy
equivalent to each other. These methods should be reasonably robust so as to not
fail in the presence of noisy, or vast amounts of input data that one is often likely
to work with in the field of computational geometry, and should be fully automated
with an eye towards efficiency.

In the rest of this paper, I will describe a method for computing one such in-
variant, related to the cup product structure on a class of topological spaces, the
simplicial complexes, which have the advantage of having a concise combinatorial
representation well suited for computers. We will begin in the setting of simplicial
complexes, but move towards more abstract algebraic representations in order to
leverage some important tools from algebraic topology.

I will give a theoretical discussion about the motivation and strategy by which
we compute these invariants. Then I will proceed to give implementation details
and results to show the practicality of the algorithms involved.
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2. The Reduction Algorithm for Homology

For computational simplicity, one often restricts to the (finite) simplicial com-
plexes in computational topology. This class of spaces has the advantage that they
can easily be represented in memory on a computer, and as will be discussed in this
section, there is a well-understood algorithm for computing their homology groups.

To begin, we will recall some basic definitions from topology [8]. An n-simplex
is defined as the convex hull of an ordered list of n affine independent points in a
euclidean space. We can write an n-simplex σ as σ = [v0, . . . , vn]. The unordered
set {v0, . . . , vn} is called the vertex set for σ. If σ′ is a simplex whose vertex set is
a subset of the vertex set for σ, then we say that σ′ is a face of σ. We say that σ
is a coface of σ′.

Definition 2.1. A finite simplicial complex X is a finite set of simplices such that:

(1) For every σ ∈ X, every face of σ is also a member of X.
(2) For any two simplices σ1, σ2 ∈ X, σ1 ∩ σ2 is either empty, or a common

face of both σ1 and σ2.

For a simplicial complex, there is a standard algorithm for computing the homol-
ogy groups in each dimension [7]. Suppose ∂n : Cn → Cn−1 is the nth dimensional
boundary operator for a simplicial complex X. Let Zn = ker ∂n and Bn−1 = im ∂n.
Then Hn(X) is defined as Hn(X) = Zn/Bn. To develop the reduction algorithm,
we first observe that a chain complex

· · · → Cn+1
∂→ Cn

∂→ Cn−1 → · · ·

splits into a direct sum of subcomplexes each with at most two nonzero terms, since
each Cn splits as Cn = Zn⊕Bn (where Bn is actually an isomorphic copy of im ∂n

in Cn). The splitting is as follows:

−→ Cn+1 −→ Cn −→ Cn−1 −→ Cn−2

...
...

0 −→ Bn −→ Zn−1 −→ 0
⊕ ⊕ ⊕

0 −→ Bn+1 −→ Zn −→ 0
⊕ ⊕ ⊕

0 −→ Bn+2 −→ Zn+1 −→ 0
...

...

In the case where the chain complex arises from a finite simplicial complex, then
these Cn are finitely generated and so one can deduce that a further splitting occurs
for the sequence 0 → Bn+1 → Zn → 0. Let Mn be the matrix representation for
∂n with respect to the standard basis of Cn. The reduction algorithm will be to
use the elementary row and column operators to reduce Mn to a more manageable
form. The allowed operations are:

(1) exchange row i and row j.
(2) multiply row i by -1.
(3) replace row i by (row i) + q(row j), where q is an integer and j 6= i.

and their analagous column operations.
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The reduction algorithm reduces Mn to its (Smith) Normal Form, M̃n, where
all entries are zero except possibly a block at the top left corner which may contain
nonzero entries down the diagonal.

M̃n =



bl1 0
. . . 0

0 bln

0 0


The columns in this matrix with non-zero entries correspond to a basis for the

image and each gives a summand of the form 0 → Z
blk−→ Z → 0. The zero columns

correspond to a basis for Zn and each one gives a summand of the form 0 → Z → 0.
It follows that by computing the normal form for the boundary operators in all
dimensions, we can read off a characterization of Hn using the following rules:

(1) For each diagonal entry bl of M̃n greater than one, there is a torsion sum-
mand in Hn−1, Zbl

. If the coefficient group is G, then the contribution is
just G/blG.

(2) rank Zn = mn − ln where mn is the number of columns of the matrix.
(3) rank Bn = ln+1

With this algorithm, it is easy to compute betti numbers, as:

βn = rank Zn − rank Bn = mn − ln − ln+1

As we will see presently, homology does not do as well as cohomology as an
invariant, and the reduction algorithm itself has some shortcomings if implemented
naively.

3. Simplicial Cohomology

For reasons of theoretical and practical importance in our computational setting,
we will from this point deal only with cohomology with coefficients taken from a
field F . In practice, F will be either Z2 or Q.

The assumption that we are working over a field greatly simplifies matters be-
cause now the (co)chain groups are vector spaces. Because of this, one can apply
standard techniques in linear algebra.

Despite the numerous applications of homology, one finds that it is rather limited
in ways. Consider, for example, comparing the homology of the two spaces X =
S1 × S1 and Y = S2 ∨ S1 ∨ S1. We see in both cases that:

Hn(X;F ) = Hn(Y ;F ) =


F n = 0
F ⊕ F n = 1
F n = 2
0 n ≥ 3

while it seems ”obvious” that these spaces should not be homotopy equivalent. But
it is not so clear how to prove that this is the case without resorting to a cohomology
computation.

I will return to this example of the torus and the sphere with two handles shortly.
The problem of course is that while it is true that two homotopy equivalent spaces
must share the same homology groups, the converse of this statement is not true.
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Figure 1. S1 × S1 and S2 ∨ S1 ∨ S1

In general, simplicial cohomology will have the same difficulty, but we would like to
be able to calculate it because it can distinguish more spaces apart than homology
can as it turns out to be a ”finer” invariant.

Formulated as the ”dual” to homology, it is surprising that one would get any
extra information from cohomology at all. In fact, by the universal coefficient
theorem [7], the sequence

0 → Ext(Hn−1(C), R) → Hn(C;R) → Hom(Hn(C);R) → 0

is exact, which says that as groups, theHn(C;R) are determined up to isomorphism
by the homology groups Hn(C;R). If R = F is a field, this sequence implies an
isomorphism Hn(C;F ) ≈ Hom(Hn(C);F ).

The ”extra information” we desire can be found in the ring structure that co-
homology is equipped with, where the multiplication comes from the so-called cup
product.

Revisiting the previous example, we see that this cup product structure is suf-
ficient to distinguish the torus, X = S1 × S1, from the two-handled sphere, Y =
S2 ∨ S1 ∨ S1. Again, as groups, the cohomology of these groups is the same:

Hn(X;F ) = Hn(Y ;F ) =


F n = 0
F ⊕ F n = 1
F n = 2
0 n ≥ 3

Let α1 and α2 be cocycles generating H1(X;F ). As it turns out, α1 ^ α2 is a
generator for H2(X;F ). This can be seen as a consequence of Poincare Duality
since the torus is a closed orientable manifold. However, if β1 and β2 are cocycles
generating H1(Y ;F ), then β1 ^ β2 = 0. The conclusion is that the cohomology
rings H∗(X;F ) and H∗(Y ;F ) are not isomorphic even though the groups at each
degree of the graded rings are isomorphic.

4. The Cup Product

The cup product in cohomology is the operation which turns the cohomology
groups of a space X into a commutative graded ring: H∗(X;R) = ⊕k≥0H

k(X;R).
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In this section, I will present a formulation of the cup product via the Alexander-
Whitney diagonal approximation and then discuss some invariants that are related
to the cohomology ring resulting from the cup product.

The main map which we will be concerned with is known as the Alexander-
Whitney homomorphism [6] and is conveniently defined on the level of chains. For
a topological space X, denote the singular chain complex for X by C∗(X). For a
singular n-simplex σ in a simplicial complex, let iσ be the front i-face of σ. For
example, if σ = [v0, . . . , vi, . . . , vn], then σi = [v0, . . . , vi]. Similarly, σj is defined
to be the back j-face of σ.

We define a tensor product of chain complexes as:

(C∗(X)⊗ C∗(Y ))n = ⊕i=0
n Ci(X)⊗ Cn−i(Y )

The Alexander-Whitney homomorphism, A : Ci(X × Y ) → (C∗(X) ⊗ C∗(Y ))i is
then given on a simplex (σ, τ) ∈ X × Y :

A(σ, τ) =
n∑

i=0

iσ ⊗ τn−i

and induces a map in homology, A∗ : Hi(X × Y ) → Hi(C∗(X) ⊗ C∗(Y )). As an
example, suppose σ is a 3-simplex labeled with vertices [0, 1, 2, 3]. Then τ(σ) =
[0]⊗ σ + [0, 1]⊗ [1, 2, 3] + [0, 1, 2]⊗ [2, 3] + σ ⊗ [3].

Proposition 4.1. Some properties of the Alexander-Whitney homomorphism are:
(1) A is functorial in (X,Y ).
(2) A is a chain map.
(3) A∗ is an isomorphism in homology and in fact is a chain equivalence of

C(X × Y ) with C∗(X)⊗ C∗(Y ).

The proof of the (1) and (2) of the proposition can be found in Greenberg [6],
and (3) follows from the Eilenberg-Zilber theorem and shows that we can compute
the homology of a product space by looking at the tensor product chain complex.

The definition of the cup product requires several steps. The cohomology cross
product (also called the external cup product ) relates the direct product of two
cohomology groups to the cohomology group of their product space. To define it,
we first define an algebraic cross product for chain complexes A∗, B∗,

×alg : Hi(A∗)⊗Hj(B∗) → Hi+j((A∗ ⊗B∗)∗)

where α×alg β(
∑
σi ⊗ τi) =

∑
α(σi) · β(τi)

The cohomology cross product is the composition

Hi(X;R)×Hj(Y ;R) ×
alg

−→ Hi+j((C∗(X)⊗ C∗(Y ))∗) A∗

−→ Hi+j(X × Y ;R)

where ×alg is the algebraic cohomology cross product and A∗ : C∗(X × Y ) →
C∗(X)⊗ C∗(Y ) is the dual of the Alexander-Whitney chain map.

Let ∆ : X → X ×X be the diagonal map given by x 7→ (x, x). The cup product
can now be defined as the composition of the cohomology cross product with the
dualized diagonal map, ∆∗ : H∗(X ×X) → H∗(X):

^: Hi(X)×Hj(X) → Hi+j(X ×X) → Hi+j(X)

The key reason why it can be defined for cohomology but not for homology turns
out to be the contravariance of the cohomology functor. For a general space X, it
is not clear how one would define a map X ×X → X without resulting in a trivial
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product (which would be the case if we simply projected onto a factor), but A∗

results in a map that gives a nontrivial product in cohomology. There are several
important facts about the cup product which the next proposition will summarize.

Proposition 4.2. Properties of the Cup Product
(1) (Leibnitz Rule) δ(α ^ β) = δα ^ β + (−1)iα ^ δβ for α ∈ Ci(X) and

β ∈ Cj(X).
(2) (Identity) Let 1 ∈ H0(X) be represented by the cocycle that maps every 0-

simplex in X to the multiplicative identity in the field. Then for α ∈ Hi(X),
1 ^ α = α ^ 1 = α.

(3) (Associativity) For cochains α, β, γ, (α ^ β) ^ γ = α ^ (β ^ γ)
(4) (Graded Commutativity) For α ∈ Hi(X) and β ∈ Hj(X), α ^ β =

(−1)ijβ ^ α.
(5) Let f : X → Y be a continuous map of spaces, and let f∗ : Hi(Y ) → Hi(X)

be the induced maps in cohomology. Then,

f∗(α ^ β) = f∗(α) ^ f∗(β)

The proofs can be found in any introductory text on algebraic topology. In
particular, observe that the middle three properties make H∗(X) = ⊕i≥0H

i(X)
into a graded commutative ring with identity, and the fourth shows the cup product
structure to be a topological property of a space.

Let I∗(X) ⊂ H∗(X) be the graded ideal generated by the elements of H∗(X)
with positive grading. To computationally extract information about the cup prod-
uct structure on a space X, we will compute a combinatorial set of invariants given
by dimF (I/I2), dimF (I2/I3), . . . , dimF (Ik/Ik+1), where Ik is defined inductively
as

Ik(X) =

∑
finite

αi ^ βi | αi ∈ Ik−1(X) and βi ∈ I(X)


(Notice that if we had allowed I to be the entire cohomology ring, then Ik would
contain the identity cocycle class for all k, and result in trivial invariants.) In
particular, we would like to compute dimF (I/I2) which has a nice interpretation
as measuring the degree to which elements in the cohomology ring appear directly
as cup products of elements with lower grading. The method by which these can
be computed will be shown next after the diagonal approximation is defined.

4.1. The Diagonal Approximation. The Alexander-Whitney diagonal approx-
imation, τ : C∗(X) → C∗(X) ⊗ C∗(X), comes from composing the diagonal map
with A and can be explicitly written as:

τ(σ) = A ◦∆(σ) =
n∑

i=0

iσ ⊗ σn−i

Notice that the cup product can now be rewritten more concretely for cochains
α ∈ Cp(X) and β ∈ Cq(X) as ([9])

α ^ β([v0, . . . , vp+q]) = τ∗(α×alg β)([v0, . . . , vp+q])
= α([v0, . . . , vp]) · β([vp, . . . , vp+q])

We can also define a reduced version of the map, τ̄ : C̄∗(X) → C̄∗(X)⊗ C̄∗(X),
where C̄∗(X) = C∗(X)/C∗(x0) for some basepoint x0 ∈ X.
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We can finally compute the invariant, dim(I/I2). To do this, we use a general
fact from algebra. Given an R-module homomorphism f : A → B and its dual,
f∗ : B∗ → A∗, where A and B are both finitely generated, and A∗ = HomR(A,R),
B∗ = HomR(B,R), we have

(ker f)∗ ≈ coker(f∗)

To compute dimF (I/I2) is the same as computing the dimension of the cokernel
of the cup product map. Thus using the above fact, it is equivalent to computing
the dimension of the kernel of the Reduced Alexander-Whitney diagonal approxi-
mation, τ̄∗. To actually compute this number, however, we will turn to a slightly
unconventional application of topological persistence, which will be the topic of the
next section.

5. Topological Persistence

Despite the simplicity and elegance of studying homology as a topological in-
variant, it tends to have several shortcomings, several of which have been discussed
in the section on cohomology. Computationally speaking, the reduction algorithm
for homology requires operations to be performed with exact integer arithmetic,
and this is difficult if we would like to deal with large high dimensional complexes
because entries in the matrices tend to get very large. Furthermore, calculating
homology on large datasets naively may not always yield the result that we would
like to have due to possible noisiness or incompleteness in the data. The presence
of noise lends to the presence of many small topological features in the larger space
and so it would be desirable to ”filter” out the small features and to retain the
more important ones. We are thus led to the notion of persistent homology [10].

In persistent homology, one considers a simplicial complex K which has been
given a filtration that explains how K might be built up in steps. Formally we say
that a persistence complex is an increasing sequence of simplicial complexes along
with its boundary maps. In general, it is a family of chain complexes {Ci

∗}i≥0

(where i denotes the filtration index of a complex) and chain maps fi that include
Ci
∗ into Ci+1

∗ . Along with boundary maps, we have the diagram

↓ ↓ ↓
C0

2 −→ C1
2 −→ C2

2 −→
↓ ↓ ↓
C0

1 −→ C1
1 −→ C2

1 −→
↓ ↓ ↓
C0

0 −→ C1
0 −→ C2

0 −→
By specifying how a complex is built using filtrations, there is now more topolog-

ical information to consider. Of course we can begin by computing the homology of
each complex at each filtration index, but the interesting thing now is what happens
to topological features (cycles) as we carry them step by step through the filtration
indices.

As an example, consider the filtered complex given in figure 2. At step 0, there
are two contractible connected components, which become two circles at step 1.
At step 2, the two components join to form just one component. Finally, one of
the circles is filled, killing off a 1-cycle class in homology. Being in the context of
a filtered complex, we can think of cycles as having ”lifetimes”, and at any given
time step, the homology of the current complex is the sum of the cycles which are
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Figure 2. A Filtered Simplicial Complex

”alive” at that time. The cycles which never die give the homology of the entire
complex at the end of the filtration. To formalize this notion, we give the following
generalization of a homology group.

Definition 5.1. Let Ci be a filtered chain complex, with i denoting filtration index.
Let ∂i

k denote the kth boundary operator for the ith complex in the filtration, and let
Zi

k and Bi
k be the kth cycle and boundary groups for the ith complex, respectively.

Then we define the p-persistent kth-homology group of Ci as:

Hi,p
k = Zi

k/(B
i+p
k ∩ Zi

k)

Alternatively, Hi,p
k can be defined as the image of the injection ηi,p

k : Hi
k → Hi+p

k

which sends a homology class to the one containing it.

Definition 5.2. We define a persistence module M to be a family of R-modules
M i with homomorphisms φi : M i →M i+1. This is written as M = {M i, φi}i.

The example to keep in mind here is the homology of a persistence complex,
where the maps φi map homology classes to the classes that contain them.

Definition 5.3. We say that a persistence complex or module is of finite type if
each component is finitely generated and if for sufficiently large i, the corresponding
maps φi become R-module isomorphisms.

The setup is now as follows. We are given a persistence moduleM = {Mi, φi}i≥0

over a ring R, and we would like to have a simple classification for these modules
and to develop a way to identify elements with corresponding elements at other
timesteps of the filtration. In other words, we will need to choose bases which are
compatible across the filtration in order to compute persistent homology. The main
classification is supplied by Zomorodian and Carlsson [10] and comes in two main
steps.

5.1. The Artin-Rees Correspondence. Let R[t] be the polynomial ring in t
equipped with the standard grading. We now combine all of the complexes in the
filtration to get a single structure and encode the time step at which an element is
born by a polynomial coefficient. To be precise, let α(M) be the graded R[t]-module
defined by:

α(M) =
∞⊕

i=0

M i

The action of t is an upward shift in grading: i.e.,

t · (m0,m1,m2, . . . ) = (0, φ(m0), φ(m1), φ(m2), . . . )
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And theR-module structure is just the sum of the individual componentR-modules.
Loosely, consider a simplex σ which enters the filtration at time step 2. Then we
would write it as σt2. Shifted by one step along the filtration, σ exists at time 3 as
σt3.

The main correspondence given by the Artin-Rees theory in commutative al-
gebra, is that α defines an equivalence (of categories) between the category of fi-
nite persistence modules over R and the category of finitely generated nonnegative
graded modules over R[t].

5.2. A Structure Theorem for Graded Modules over a Graded PID. If we
assume that R is a field, then R[t] becomes a principal ideal domain, which allows
us to leverage a well-known classification theorem for graded modules over graded
PIDs.

Theorem 5.4. Let D be a graded PID and M a graded D-module. Then M
decomposes as:

M ≈

(
n⊕

i=1

ΣαiD

)
⊕

 m⊕
j=1

ΣγjD/djD


where dj ∈ D are homogeneous elements such that dj |dj+1, αi, γj ∈ Z, and Σα is a
shift upwards in grading by α.

In our case, for R = F a field, we have that all graded ideals are of the form
(tn), so by the theorem, graded F [t]-modules can be decomposed as:

M ≈

(
n⊕

i=1

ΣαiF [t]

)
⊕

 m⊕
j=1

ΣγjF [t]/(tnj )


Via the correspondence with finite-type persistence modules given above, the

coefficients for this module decomposition can be made meaningful. The γj and
αj describe when a basis element is created along the filtration. The element then
either persists along the filtration until the time γj +nj−1 when it dies, or it never
dies if it lives in a free summand. Therefore, the ”lifetime” of a basis element can be
described by the pairing of its birth and death times, (γj , γj +nj) or (αj ,∞). This
pairing gives a way to parametrize the isomorphism classes of finitely generated
F [t]-modules with a finite set of combinatorial invariants. With this in mind, we
make the following definition.

Definition 5.5. A P-interval is an ordered pair (i, j) with 0 ≤ i < j ∈ Z∪ {+∞}.

Define a map Q from P-intervals to finitely generated graded F [t]-modules by
Q(i, j) =

∑i
F [t]/(tj−i). If j = +∞, then Q(i,+∞) =

∑i
F [t]. For a finite set of

intervals S = {(i1, j1), (i2, j2), . . . , (im, jm)}, we extend the definition of Q as:

Q(S) =
m⊕

k=1

Q(ik, jk)

The correspondence with the classification show that Q is a bijection between
finite sets of P-intervals and the isomorphism classes of persistence modules of finite
type over a field F .
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Figure 3. Plot of P-intervals corresponding to the filtered simpli-
cial complex from figure 2. The 0-intervals are (0,∞), (0, 2), and
the 1-intervals are (1,∞), and (1, 3).

5.3. The Persistence Algorithm. In this section I will give an overview of the
persistence algorithm over a field F , using the theory from the previous section.
For details, consult [10]. The input to this algorithm will be a finite simplicial
complex K equipped with a filtration. The output will be a finite set of P-intervals
as defined above which characterize the persistence module (the homology of the
filtered complex) up to isomorphism.

Recall that since we are working over a field, the homology groups are in fact
vector spaces. Further, by the structure theorem, there exists a basis for the per-
sistence module which gives compatible bases for all of these vector spaces. It will
be up to the algorithm to find a description for this.

The first step in the derivation of the algorithm is to represent the boundary
operator ∂n : Cn → Cn−1 relative to the standard basis for Cn and a homogeneous
one for Zn−1. Note that relative to homogeneous bases, a matrix representation
Mn of ∂n has the property that:

deg êi + degMk(i, j) = deg ej
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For example, consider again, the filtered complex given in figure (2). ∂1 (with
coefficients in Z2) is given by the matrix:

∂1 =



ab ac df ef bc de cd

f 0 0 1 1 0 0 0
e 0 0 0 1 0 t 0
d 0 0 1 0 0 t t2

c 0 1 0 0 t 0 t2

b 1 0 0 0 t 0 0
a 1 1 0 0 0 0 0


To arrive at the desired representation of ∂n, we proceed inductively. The base

case is simple as it is just the standard matrix representation of ∂1. In the inductive
step, we assume that a matrix Mn for ∂n relative to a standard basis for Cn, and a
homogeneous one for Zn−1 is given. The objective is to compute a basis for Zn and
a matrix Mn+1 for ∂n+1 relative to the standard basis for Cn+1 and the computed
basis.

The motivation for this step is the reduction algorithm for homology which
was described in section 2, where one computes Mn with respect to a nicer basis.
One key distinction though, is that we will be able to accomplish our goal via
only column operations. Instead of reducing the matrix completely to its (Smith)
Normal form using both row and column operations, we can get ”halfway” there by
using only column operations (1) and (3) to reduce Mn to its column-echelon form,
M̃n. Column-echelon form is a lower staircase form as in the following example.

M̃n =


* 0 0 0 0 0
∗ 0 0 0 0 0
∗ * 0 0 0 0
∗ ∗ * 0 0 0
∗ ∗ ∗ * 0 0


All landings in the staircase have a width of one, and any non-zero element

must lie below the staircase. The boldface elements in the example denote pivot
elements, and the rows (columns) that they occur in are called pivot rows (columns).
The algorithm to change a matrix to its column-echelon form is simply Gaussian
Elimination using only column operations of type (1) and (3).

In particular, the pivot elements are exactly the diagonal elements of the (Smith)
Normal Form for Mn, which by section 2, indicated the presence of torsion and free
summands in homology. The only difference here is that now these elements do
not correspond to the component homology groups, but rather, they give torsion
and free summands in the persistence module, which is all we need for the desired
pairing.

Lemma 5.6. Let M̃n be the column-echelon form for ∂n relative to bases {ej}
and {êi} for Cn and Zn−1 respectively. If row i has pivot Mn(i, j) = tn, it con-
tributes the summand Σdeg êiF [t]/(tn) to the description of Hn−1. Otherwise, it
contributes the summand Σdeg êiF [t]. In the language of P-intervals, we get the
pairs (deg êi, deg êi + n) and (deg êi,∞) respectively for Hn−1.
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The basis elements corresponding to the non-pivot columns of the column echelon
form comprise a basis for Zn. From here, it is easy to obtain a matrix representation
for ∂n+1 with respect to this basis.

Lemma 5.7. To represent ∂n+1 by a matrix with respect to the computed basis for
∂n as above, first let Mn+1 be the matrix for ∂n+1 with respect to the standard basis.
The desired representation is given by deleting the rows of Mn+1 corresponding to
the pivot columns of M̃n.

Proof. There are two main observations. The first one is that since ∂n ◦ ∂n+1 =
0, the relationship Mn · Mn+1 = 0 is not affected by elementary operations on
the basis elements. Second since the domain of Mn is the codomain of Mn+1,
any column operation on Mn also gives a corresponding row operation on Mn+1.
Since Mn ·Mn+1 = 0, the row operations corresponding to the column operations
which brought Mn to its column echelon form must zero out the rows in Mn+1

corresponding to the pivot columns in M̃n+1.
To be precise, consider the type (3) column operation, which is the only one

we use here which changes values in the matrix. The operation replaces a column
i by col i + q · col j. The corresponding row operation is to replace row j by
row j − q · row i. This operation only changes row j (not row i), but row j is
eventually zero, and so we see that it is sufficient to simply delete these rows. �

The persistence algorithm is based on these two lemmas that show that a full re-
duction to normal form is unnecessary and that only column operations are needed.
The full algorithm is detailed in [10], and has a worst-case complexity of O(m3)
where m is the total number of simplices in the filtration. I will now give two
interesting applications of persistence.

5.4. Examples.

Example 5.8 (The Rips Complex). Consider a finite set of points, X, which
have been sampled from a subspace X ⊂ Rn (say, a manifold). If the sampling
is sufficiently dense, we might hope to calculate topological information about X
using only the Point Cloud Data set (PCD), X.

To capture this information about the underlying space, we can build a Rips
complex. This simplicial complex Rε(X) is constructed by declaring a set of vertices
V = {v0, . . . , vk} ⊂ X to span a k-simplex σ whenever d(vi, vj) ≤ ε ∀vi, vj ∈ V .
The vertex set of Rε(X) is of course, the points of X. Notice that when ε1 < ε2,
there is an inclusion Rε1(X) ↪→ Rε2 . Therefore, we obtain a persistence complex
for every increasing sequence of nonnegative real numbers {εi}i≥0 [10].

Example 5.9 (The Filtered Tangent Complex). Consider a subset X ⊂ Rn. It
is possible to construct a topological space, namely, the tangent complex, whose
homotopy type is sensitive to geometric features that might not necessarily be
topological. We define T 0(X) ⊂ X × Sn−1 by

T 0(X) =
{

(x, ζ) | lim
t→0

d(x+ tζ,X)
t

= 0
}

The tangent complex, T (X), is defined to be the closure of T 0(X). T (X) can
be given a filtration parametrized by curvature, κ(x). Let T 0

ε (X) ⊂ T 0(X) be
the subset consisting of points (x, ζ) such that κ(x) < ε. As before, we define
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Tε(X) = cl(T 0
ε (X)). The family of spaces {Tε(X)}ε>0 is called the filtered tangent

complex, T filt(X).
Computing persistent homology on T filt(X) yields a set of intervals which can

be used as a compact geometric shape descriptor [2, 3].

In the next section, we will define the algebraic mapping cylinder, and consider
applying the persistence algorithm to a filtered version of this complex.

6. The Algebraic Mapping Cylinder

A common technique in algebraic topology used to study maps is to associate a
space to it and to examine its topology. One such space is the mapping cylinder
(there are others, like the mapping cone), and for a continuous map f : X → Y , it
is the identification space obtained by taking the disjoint union (X × I)

∐
Y and

identifying the points (x, 1) ∈ X × I with corresponding points f(x) ∈ Y . This
space is denoted by Mf . The two main facts about Mf is that it holds an embedded
copy of X, but deformation retracts onto the subspace Y [7].

We can use this type of space to study the Alexander-Whitney chain map, but
first it will be necessary to define a more algebraic notion of the mapping cylinder
because we would like to explicitly define the mapping cylinder in terms of the
chain complexes associated with X and Y . Given a chain map f : A→ B between
two chain complexes A and B, we define the algebraic mapping cylinder Mf as the
chain complex ([4]):

Mf
n = An−1 ⊕An ⊕Bn

with boundary maps given by ∂n : Mf
n →Mf

n−1, where

∂Mf

n =

 −∂A
n−1 0 0

−idA ∂A
n 0

f 0 ∂B
n


Intuitively if A = C∗(X) and B = C∗(Y ), then the An and Bn summands represent
the X and Y , but the An−1 summand represents the simplices of X × I, and so
they are shifted up by one dimension and attached to Y by f . We can easily check
that this is indeed a chain complex using the fact that ∂2 = 0 for A and B and
that f and the identity both induce chain maps:

∂Mf

n−1 ◦ ∂Mf

n =

 −∂A
n−2 0 0

−idA
n−2 ∂A

n−1 0
fn−2 0 ∂B

n−1

 −∂A
n−1 0 0

−idA
n−1 ∂A

n 0
fn−1 0 ∂B

n


=

 ∂A
n−2 ◦ ∂A

n−1 0 0
idA

n−2 ◦ ∂A
n−1 − ∂A

n−1 ◦ idA
n−1 ∂A

n−1 ◦ ∂A
n 0

−fn−2 ◦ ∂A
n−1 + ∂B

n−1 ◦ fn−1 0 ∂B
n−1 ◦ ∂B

n


= 0

Furthermore, there is a chain homotopy between the identity map on Mf and
a map that embeds A in Mf (by f) and restricts to the identity on B, expressing
the fact that the mapping cylinder is homotopy equivalent to Y and thus will have
the same homology. The chain homotopy is given explicitly by H : Mf

n → Mf
n+1

where:

H =

 0 idA
n 0

0 0 0
0 0 0





14 JONATHAN HUANG

and is the diagonal operator in the following commutative diagram:

−→ Mf
n+1

∂−→ Mf
n

∂−→ Mf
n−1 −→

↓ ↙ ↓ ↙ ↓
−→ Mf

n+1
∂−→ Mf

n
∂−→ Mf

n−1 −→
To check that this is a chain homotopy:

∂Mf

n+1Hn +Hn−1∂
Mf

n =

 0 −∂A
n ◦ idA

n 0
0 −idA

n 0
0 fn 0

+

 −idA
n−1 ◦ idA

n−1 idA
n−1 ◦ ∂A

n 0
0 0 0
0 0 0


=

 −idA
n−1 0 0
0 −idA

n 0
0 fn 0


=

 0 0 0
0 0 0
0 fn idB

n

−

 idA
n−1 0 0
0 idA

n 0
0 0 idB

n


=

 0 0 0
0 0 0
0 fn idB

n

− idMf

n

6.1. The Kernel of a Chain Map. Let f : A → B be a chain map and let
f∗ : H∗(A) → H∗(B) be the map that it induces in homology. In this section, I will
present a strategy to find the dimension of the kernel of f∗. To solve the problem,
the solution will be to apply the persistence algorithm to the algebraic mapping
cylinder in an unconventional way. Instead of looking for long lasting features in
this filtered space, we will instead be concerned with the short lived ones.

Let Mf be the associated algebraic mapping cylinder for f . We now assign a
filtration F to the basis elements for Mf by:

F (σ) =
{

0 if σ ∈ A
1 if σ ∈ B

Now if we run the persistence algorithm on Mf with this filtration, then the
output will yield P-intervals of the forms (0,∞), (1,∞), or (0, 1).

Lemma 6.1. The number of P-intervals of the form (0, 1) from the output of the
algorithm is exactly the dimension of ker f∗.

Proof. By the correspondence from section 5, each (0, 1)-interval corresponds to
a summand of the form F [t]/(t). Thus, it corresponds to a basis element for the
homology vector space that exists at time 0, but not at time 1. Now the basis
elements that exist at time 0 are all basis elements for H∗(A) by the way the
filtration is defined. The subset of these which do not persist are those that make
up the kernel of the inclusion mapH∗(A) ↪→ H∗(Mf ), which by the chain homotopy
from the previous section is the same as the kernel of f∗ : H∗(A) → H∗(B). �

Therefore, the strategy to compute the set of invariants: dim(I/I2), dim(I2/I3),...
will be as follows:

Given a simplicial complex C,
(1) Construct the tensor product complex C∗ ⊗ C∗.
(2) Construct the Reduced Alexander-Whitney Chain Maps τ̄ : C → C∗ ⊗C∗.
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(3) Construct the Algebraic Mapping Cylinder M τ̄ for the Reduced Alexander
Whitney map.

(4) Filter MA by F .
(5) Run the persistence algorithm on the chain complex M τ̄ with filtration F

to yield a set of P-intervals.
(6) Set dim(I/I2) = dim ker τ̄∗ = (#P-intervals of the form (0, 1)).

The calculation is similar for In/In+1 but with a variant of the Alexander-
Whitney map. For example, to compute I2/I3, we would use

τ̄ ⊗ id : C̄∗ ⊗ C̄∗ → C̄∗ ⊗ C̄∗ ⊗ C̄∗

Of course one can always approximate the mapping cylinder with a simplicial
complex and so we could have approached the problem by constructing explicit
triangulations for the the mapping cylinder (given in Hatcher section 2.C [7]) but
the algebraic formulations allow for computations to be done on far fewer basis
elements.

7. Plex

Plex is a set of computational tools developed by Vin de Silva and Patrick
Perry with a Matlab frontend for analyzing the topology of data sets which can
be given the structure of a simplicial complex. Specifically, it provides methods
for constructing finite simplicial complexes with associated boundary maps, and
topological persistence methods.

I have implemented methods extending Plex for constructing an algebraic map-
ping cylinder for the Alexander-Whitney chain map. To do this, it was first neces-
sary to extend Plex to handle general (finitely generated) chain complexes.

The advantage that simplicial complexes have is that they have an elegant combi-
natorial representation as a data structure and the fact that each simplex knows its
faces and cofaces makes it unnecessary to store explicit boundary maps in memory.

While they can indeed capture a large class of spaces up to homotopy equivalence,
they often must do so inefficiently and are not so easy to construct. Furthermore,
one frequently works with complexes which have been defined algebraically and did
not come directly from a geometric object. The tensor product of chain complexes
is one example, and the algebraic mapping cylinder is another.

With a general chain complex, there is no notion of a face or coface, so at each
dimension, it is just an ordered list of basis elements for the free abelian group.
In the implementation (in C++), the ChainComplex class can be constructed in
a number of ways. The most interesting will be by direct sum, tensor product,
or mapping cylinder. These constructions can be concatenated to build arbitrarily
large complexes. It can also be constructed by a SimplicialComplex, in which case
it holds pointers to each simplex in the complex and constructs explicit boundary
maps at each dimension up to the dimension of the complex. For storage efficiency,
sparse matrices are used for these maps. Another important data structure which
is derived from the ChainComplex class is the FilteredChainComplex, which simply
maps each basis element in the ChainComplex to some filtration value.

Some extra functions were added to the existing sparse matrix library used in
Plex. Most of these were helper functions for piecing linear maps together from
maps of subspaces of the domain or maps to subspaces of the range. For the tensor
product, it was necessary to implement a Kronecker product operation:
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Given linear maps represented by matrices A, and B, the tensor product map is
given by the Kronecker product of the matrices,

A⊗B =


a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

. . .
...

an1B an2B . . . anmB


where A = (aij).

A tensor product of chain complexes can be constructed in the following way.
Given chain complexes A∗, and B∗, we define the tensor product chain complex by:

(A∗ ⊗B∗)n =
n⊕

i=0

Ai ⊗Bn−i

where Ai ⊗ Bn−i is a tensor product of vector spaces since we always work over
a field. If the basis elements of Ai and Bn−i are enumerated as {α1, . . . , αk} and
{β1, . . . , βl} respectively, the basis for Ai⊗Bn−i is enumerated as {α1⊗β1, . . . , α1⊗
βl, α2⊗ β1, . . . , α2⊗ βl, . . . . . . , αk ⊗ β1, . . . , αk ⊗ βl}. With this enumeration, given
linear maps φ, ψ whose domains are Ai and Bn−i respectively, the matrix repre-
sentation for the tensor product map φ⊗ ψ is given by their Kronecker product as
above.

The boundary map ∂ : (A∗⊗B∗)n → (A∗⊗B∗)n−1 is specified on each summand
Ai ⊗Bn−i by:

∂(α⊗ β) = ∂A ⊗ β + (−1)iα⊗ ∂Bβ

for α ∈ Ai, and β ∈ Bn−i.
For example, the matrix for ∂4 : (A⊗B)4 → (A⊗B)3 is:

∂4 =


idA

0 ⊗ ∂B
4 ∂A

1 ⊗ idB
3 0 0 0

0 −idA
1 ⊗ ∂B

3 ∂A
2 ⊗ idB

2 0 0
0 0 idA

2 ⊗ ∂B
2 ∂A

3 ⊗ idB
1 0

0 0 0 −idA
3 ⊗ ∂B

1 ∂A
4 ⊗ idB

0


Since each summand maps to only two summands below it, we see one reason

why it is a good idea to use sparse matrix representations here.
With the ability to handle tensor products of chain complexes, Plex now can

compute the homology of a product space. Of course it is possible to simply give
the product space the structure of a simplicial complex, but in general, the tensor
product complex will be smaller.

Example 7.1. In the simple example I × I, we can already see that this is true.
Let I1 be the unit intervals with vertices α1 and α2 with edge (α1 α2). Let I2 be
the unit interval with vertices β1 and β2 with edge (β1 β2). Now a triangulation of
I1×I2 will result in 4 vertices, 5 edges (one diagonal), and 2 faces (one on each side
of the diagonal edge). The tensor product however, will have 4 vertices, 4 edges,
and 1 face.

(I1 ⊗ I2)0 = 〈α1 ⊗ β1, α1 ⊗ β2.α2 ⊗ β1, α2 ⊗ β2〉
(I1 ⊗ I2)1 = 〈α1 ⊗ (β1 β2), α2 ⊗ (β1 β2), (α1 α2)⊗ β1, (α1 α2)⊗ β2〉
(I1 ⊗ I2)2 = 〈(α1 α2)⊗ (β1 β2)〉
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7.1. Results. We now revisit the first example of X = S1×S1, and Y = S2∨S1∨
S1. After defining filtered chain complexes, and the reduced Alexander-Whitney
chain map, we can use the following code in C++ to run the algorithm for com-
puting ker(I/I2) on the simplicial complex, scomplex. In the implementation, per-
sistence is computed with coefficients in Z2.

ReducedAlexanderWhitneyMap<Alloc> F(scomplex);
FilteredChainComplex<Alloc> *fccomplex =

new FilteredChainComplex<Alloc>(F);
Pivot_space_t * pairs = ComputeMCPersistence(fccomplex);

The output is a long list of intervals, but tallying the ones that take the form
(0,1) in each dimension yields [0,2,0,0] for S1 × S1, and [0,2,1,0] for S2 ∨ S1 ∨ S1.
As the program shows, all cohomology classes for the torus can be written as cup
products of lower dimensional cocycles, while the product of any two cocycle classes
inH1(Y ) must necessarily be zero. Hence, S1×S1 and S2∨S1∨S1 are not homotopy
equivalent.

For a larger example, consider comparing X = S1 × S2 and Y = S1 ∨ S2 ∨ S3.
Both complexes have the following homology groups,

Hn(X;F ) = Hn(Y ;F ) =
{
F 0 ≤ n ≤ 3
0 4 ≤ n

But, running the algorithm on triangulations ofX and Y give invariants [0,1,1,0,0,0]
and [0,1,1,1,0,0] respectively, and so these spaces are not homotopy equivalent ei-
ther.

8. Conclusions

In this paper, I have presented a method for computing a set of invariants which
describe the cup product structure of a space. The motivation behind this is that
the cohomology ring of a space is a finer invariant than homology groups. In
certain classes of spaces, there are strong restrictions on the form that the cup
product structure of the space can take. For example, Poincare Duality forces
much structure onto the cohomology ring of a manifold.

The method for computing these invariants is based on the fact that one can
study cup products in cohomology by studying the Alexander-Whitney map in-
duced in homology. To determine the dimension of the kernel of this map, we
constructed an algebraic mapping cylinder associated to it and gave it a particular
filtration such that running the persistence algorithm yielded the number of basis
elements in homology that died under the Alexander-Whitney chain map.

On a more computational level, I have explored the possibilities of doing chain
complex computations within the software package, PLEX, as opposed to work-
ing with the standard simplicial complex. Simplicial complexes are convenient to
work with in many ways. They are conceptually more intuitive by their geomet-
ric definition, and the boundary maps are easily specified as the set of faces for
each individual simplex (with sign if F 6= Z2). Unfortunately, due to the vari-
ous constraints that define a simplicial complex, these spaces are prone to getting
very large. To fix this, there are several things that can be tried. A simplicial set
representation is one possibility, where one drops the requirement that a simplex
be uniquely determined by its vertices. In this paper, I have outlined automated
methods to construct mapping cylinders, direct sums (associated to disjoint union
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or wedge products of spaces), and tensor products (associated to product spaces).
While all of these types of spaces can be given triangulations, the algebraic chain
complex representation can be much more compact.

Future work on this project might involved searching for faster, more efficient
algorithms for manipulation sparse matrices in order to improve the software imple-
mentation. Another direction to explore is tracking cup product structures along
a filtered simplicial complex. With our method, there would then be two persis-
tence dimensions to consider. One problem that remains is that the intermediate
complexes can become very large, despite savings by using tensor products and al-
gebraic formulations of the mapping cylinder. In the innocent example of running
the algorithm on S1 × S2, we see that boundary maps for the algebraic mapping
cylinder can have on the order of 10,000x10,000 entries!
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