
GAUSS-MARKOV MODELS

JONATHAN HUANG

1. Introduction

Kalman filters and its many cousins (EKF, UKF, etc...) have seen a lot of action
over the last few decades in many application domains, like robotics, computer
graphics and speech recognition, to name but a few. A solid understanding of
the underlying probabilistic model (the Gauss-Markov model) is fundamental as a
simplified case for understanding more complicated dynamical probabilistic models
like SLAM (Simultaneous Localization and Mapping).

The story of the Kalman filter begins with the humble Gaussian distribution,
which can be thought of as the maximum entropy distribution with fixed mean
and (co)variance. While Gaussian distributions are often too limited in expressive-
ness, they are powerful because they can be reasoned about in closed form, which
typically leads to efficient probabilistic inference algorithms.

In these notes, I’ll start with a discussion of basic properties of the Gaussian,
then show how we can use them to derive efficient inference algorithms for Gauss-
Markov models, like the Kalman filter.

2. Basic Properties of Gaussian Distributions

There are typically two ways to parameterize the density function of a Gaussian
distribution. The first (more familiar) way is known as the Moment Parameteriza-
tion:

P (x) ∝ exp
(
−1

2
(x− µ)T Σ−1(x− µ)

)
,

where µ is the mean of the distribution and Σ, the covariance matrix. In the
moment form, zeros in the covariance matrix imply marginal independencies (i.e.
Σij = 0 implies that xi ⊥ xj).

The second parametric form is known as the Natural Parameterization:

P (x) ∝ exp
(
JTx− 1

2
xTPx

)
.

The two parameterizations are related by the following equations:

P = Σ−1,(1)

J = Σ−1µ.(2)

J and P are known as the information vector and matrix respectively. In contrast to
the moment form, zeros in the information matrix imply conditional independencies.
For example, if Pij = 0, then we know that xi and xj are independent conditioned
on all other xk. Alternatively put, if we draw an Markov random field for P , then
we do not need an edge between xi and xj if Pij = 0.

1

2 JONATHAN HUANG

For the rest of these notes, x1, x2 will be vectors in real vector spaces, and
distributed as: [

x1

x2

]
∼ N

(
µ =

[
µ1

µ2

]
,Σ =

[
Σ11 Σ12

ΣT
12 Σ22

])
,

in Moment parameters and equivalently as[
x1

x2

]
∼ Ñ

(
J =

[
J1

J2

]
, P =

[
P11 P12

PT
12 P22

])
,

in Natural parameters.
Despite the conceptual ease of going back and forth between the moment and nat-

ural forms, each has its own advantages and disadvantages, and it is often preferable
to use one over the other in many real problems. In particular, typical operations
that one might perform on a Gaussian involve linear transformations and condi-
tioning operations. While both can be done in both parameterizations, the former
takes a simpler form in the moment parameterization and the latter takes a simpler
form in the natural parameterization.
Linear Transformations. If we have a normally distributed vector x ∼ N(µ,Σ),
we will want to know the distribution of x after passing it through a linear trans-
formation corresponding to the matrix A. Not only will linear transformations be
important for the prediction step of filtering, but marginalization can be seen as a
linear transformation. It is not difficult to see that Ax must also be normally dis-
tributed, and computing moments of Ax can be done using linearity of expectation:

E[Ax] = AE[x] = Aµ(3)

E[(Ax)(Ax)T] = E[AxxTAT] = AE[xxT]AT = AΣAT(4)

Therefore, Ax ∼ N(Aµ,AΣAT).
As a corollary, we can derive an easy rule for marginalizing a Gaussian in moment

parameters. For example, we have:

x1 =
[

1 0
0 0

] [
x1

x2

]
∼ N

([
1 0
0 0

]
µ,

[
1 0
0 0

]
Σ
[

1 0
0 0

]T
)
,

∼ N(µ1,Σ1),(5)

which... should not be a terribly earth-shattering result.
In the Natural paramterization, the same marginalization can also be performed

using:

x1 ∼ Ñ(J2 − PT
12P

−1
11 J1, P22 − PT

12P
−1
11 P12)(6)

x2 ∼ Ñ(J1 − P12P
−1
22 J2, P11 − P12P

−1
22 P

T
12)(7)

Conditioning. Now we turn to conditioning, which we first formulate for Natural
parameters since it is simpler. If we start off with a joint distribution, x ∼ Ñ(J, P),
we would like to know the distribution of x1|x2, which can be derived by simply
writing out the distribution of x, and ‘absorbing’ all the terms which involve x2

GAUSS-MARKOV MODELS 3

into the normalization constant.

P (x1|x2) ∝ exp

([
J1

J2

]T [
x1

x2

]
− 1

2

[
x1

x2

]T [
P11 P12

PT
12 P22

] [
x1

x2

])

∝ exp
(
JT

1 x1 −
1
2
(
xT

1 P11x1 + 2xT
2 P

T
12x1 + (terms with x2)

))
∝ exp

(
(J1 − P12x2)T

x1 −
1
2
xT

1 P11x1

)
,

which shows that:

(8) x1|x2 ∼ Ñ(J1 − P12x2, P11),

with respect to the Natural parameterization. This equation is useful for Gaussian
process regression.

In Moment parameters, the above conditioning update looks like:

(9) x1|x2 ∼ N(µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 Σ21),

and is usually derived using various blockwise matrix inversion identities.
Another important update which appears in the derivation of the Information

filter is if we just have a prior on x1, given by N(J1, P1), and would like to condi-
tion (on observed data, z) by multiplying by a likelihood function proportional to
N(J2, P2), in which case, the posterior on x1 is simply given by:

(10) x1|z ∼ Ñ(J1 + J2, P1 + P2)

3. Gauss-Markov Models

We will consider a joint distribution over over a sequence of latent (continu-
ous) state variables x1, x2,. . . , xT and a sequence of corresponding observations
z1,z2,. . . ,zT which factors as:

p(x1, . . . , xT , z1, . . . , zT) = p(x1)p(z1|x1)
T∏

t=2

p(xt|xt−1)p(zt|xt)

The state variables, xt, and the obvervations zt do not have to live in spaces with
the same dimension. We will assume that xt ∈ Rn and that zt ∈ Rm. The index t
should be thought of as a discrete timeslice index. As in Hidden Markov models,
conditional independencies (see Figure 1) dictate that past and future states are
decorrelated given the current state, xt at time t (this is sometimes called the
Markov assumption). For example, if we know what x2 is, then no information
about x1 can possibly help us to reason about what x3 should be. We will also
assume that the conditional distributions P (xt|xt−1) and P (zt|xt) are Gaussian:

xt|xt−1 ∼ N(A · xt−1,Γ)(11)

zt|xt ∼ N(C · xt,Σ).(12)

The matrices (A,Γ) and (C,Σ) are typically referred to as the parameters of the
motion model and observation (or measurement) model, respectively. We will refer
to this family of models as Gauss-Markov models. Though the parameters can in
general be different for each timestep, I will assume that the parameters are static
for simplicity.

4 JONATHAN HUANG

x1 x2 x3 x4

. . .

z1 z2 z3 z4

. . .

Figure 1. The Independence Diagram of a Gauss-Markov model

For example, if A = In×n (sometimes called the Brownian Motion model), then
the particle does a random walk through state space. Without making measure-
ments, the entropy of x increases monotonically at each time step until P (xt)
converges to uniform.

Another common motion model takes velocities into account. In this setting,
we set xt = [stvt]T , where st and vt represent displacement and velocity at time t,
respectively. A simple model which accounts for velocity uses:

A =
[
In×n (∆t)In×n

0 In×n

]
,

where ∆t is the elapsed time between timeslices t and t+ 1.

4. Recursive State Estimation

We now focus on discussing (abstractly) the recursive update rules for filter-
ing, which is the problem of computing a state distribution at each timestep t,
conditioned on all past observations. In other words, we would like to compute
P (xt|z1, . . . , zt) .

There are two steps to the recursion, a Prediction/Rollup step and a Condi-
tioning step. Given the posterior distribution computed at the previous timestep,
P (xt1 |zt, . . . , zt−1), the Prediction/Rollup step computes a predictive distribution
at time t (conditioned on the same measurements) by multiplying by the motion
model, then marginalizing out the previous timestep:

p(xt|z1, . . . , zt−1) =
∫
p(xt, xt−1 = x|z1, . . . , zt−1)dx,

=
∫
p(xt|xt−1 = x, z1, . . . , zt−1)p(xt−1 = x|z1, . . . , zt−1)dx,(13)

=
∫
p(xt|xt−1 = x)p(xt−1 = x|z1, . . . , zt−1)dx,(14)

where Equation 13 follows from the Chain rule, and Equation 14 follows from the
Markov assumption.

The Conditioning step incorporates a new observation zt using Bayes rule:

p(xt|z1, . . . , zt) ∝ p(zt|xt, z1, . . . , zt−1)p(xt|z1, . . . , zt−1),

∝ p(zt|xt)p(xt|z1, . . . , zt−1),(15)

where, again, Equation 15 follows from the Markov assumption.

GAUSS-MARKOV MODELS 5

When the state space is discrete (HMMs), the complexity of prediction/rollup
step is squared in the number of states, while the complexity of conditioning is
linear. For infinite state spaces, we have several options. One way is to grid up
the space into discrete parts and to just run the discrete HMM forward updates.
Typically, this results in a discrete state space whose size is exponential in n, the
dimension of the true continuous space. Alternatively, one can use something like
Gauss Markov model, which, as we will show, can be done in cubic time in the
dimension at the cost of being potentially oversimplified.

We can now derive algorithms for performing the recursive updates for a Gauss-
Markov model using the Gaussian identities from the previous section. The two
steps, Prediction/Rollup, and Conditioning, as will be shown, are dual to each other
in the sense that Prediction/Rollup is ‘easy’ with respect to Moment parameters
and hard with respect to the Natural Parameters, while the Conditioning step is
easy with respect to the Moment parameters and hard with respect to the Natural
parameters. I will use the following notation:

xt|z1, . . . , zt−1 ∼ N(mt|t−1, Vt|t−1),

∼ Ñ(jt|t−1, Pt|t−1),

xt|z1, . . . , zt ∼ N(mt|t, Vt|t),

∼ Ñ(jt|t, Pt|t).

4.1. Lazy Gauss-Markov Filter. The Lazy Gauss-Markov Filter always per-
forms operations in the ‘easiest’ parameterization — so prediction/rollup is per-
formed with respect to Moment parameters and conditioning is done with respect
to Natural parameters. At each timestep, we will incur some cost of converting be-
tween the two parameterizations - and in particular, it will be the cost of inverting
the matrix Vt|t, which is O(n3).

The first question we want to answer is how to get a joint distribution over
(xt, xt−1). By assumption, we have xt = Axt−1 +ε, where ε is an independent draw
from N(0,Γ). We now write:[

xt

xt−1

]
=
[
A I
I 0

]
·
[
xt−1

ε

]
.

We know that: [
xt−1

ε

]
∼ N

([
mt−1|t−1

0

]
,

[
Vt−1|t−1 0

0 Γ

])
,

and therefore, by Equation 3 and 4, we have that:[
xt

xt−1

]
∼ N

([
A I
I 0

] [
mt−1|t−1

0

]
,[

A I
I 0

]
·
[
Vt−1|t−1 0

0 Γ

]
·
[
AT I
I 0

])
∼ N

([
Amt−1|t−1

mt−1|t−1

]
,

[
AVt−1|t−1A

T + Γ AV
(AV)T V

])
.(16)

6 JONATHAN HUANG

Algorithm 1: Pseudocode for the Lazy Gauss-Markov Prediction/Rollup step
PredictionRollup
input : jt−1|t−1, Pt−1|t−1

output: mt|t−1, Vt|t−1

//Convert to Moment Parameters (if necessary)
mt−1|t−1 ← Pt−t|t−1 · jt−1|t−1 ;1

Vt−1|t−1 ← P−1
t−t|t−1 ;2

//Motion Model update (repeat over several timesteps if necessary)
mt|t−1 ← A ·mt−1|t−1 ;3

Vt|t−1 ← A · Vt−1|t−1 ·AT + Γ ;4

Applying the marginalization rule with respect to Moment parameters (Equation 5)
gives the prediction/rollup step in the Moment parameterization:

mt|t−1 ← Amt−1|t−1,(17)

Vt|t−1 ← AVt−1|t−1A
T + Γ.(18)

Now suppose that we receive an observation zt and would like to find mt|t, Vt|t
by conditioning on our newest measurement. We begin by converting from the
Moment parameterization to the Natural parameterization:

jt|t−1 ← V −1
t|t−1mt|t−1,(19)

Pt|t−1 ← V −1
t|t−1.(20)

We would like to use Equation 10, but we need to first find the Natural parameters
of the likelihood function (remember, we now care about terms which include xt,
not zt):

P (zt|xt) ∝ exp
(
−1

2
(zt − Cxt)

T Σ−1 (zt − Cxt)
)

∝ exp
(

(CT Σ−1zt)Txt −
1
2
xT

t C
T Σ−1Cxt + (constants)

)
,

which shows that the information vector and matrix of the observation model are
CT Σ−1zt and CT Σ−1C, respectively. Note that the information matrix can be
precomputed if the observation model is static. Our conditioning update, following
Equation 10, is then:

jt|t ← jt|t−1 + CT Σ−1zt,(21)

Pt|t ← Pt|t−1 + CT Σ−1C.(22)

4.2. Kalman Filter. We can also derive an inference algorithm which works en-
tirely with Moment parameters, which gives the well-known Kalman Filter. It is
important to understand the fact that the Kalman Filter itself is an algorithm, and
not the underlying probabilistic model.

In the Kalman Filter setting, the Prediction/Rollup step (commonly just called
the Prediction step) is the same as it was in the lazy version. The only work we
need to do is to rewrite the conditioning step (commonly called the Correction) with
respect to the Moment parameterization, and it will be necessary to use a matrix

GAUSS-MARKOV MODELS 7

Algorithm 2: Pseudocode for the Lazy Gauss-Markov Conditioning step
Condition
input : mt|t−1, Vt|t−1

output: jt|t, Pt|t
//Convert to Natural Parameters (if necessary)
jt|t−1 ← V −1

t|t−1 ·mt|t−1 ;1

Pt|t−1 ← V −1
t|t−1 ;2

//Observation Model update (repeat if many observations)
jt|t ← jt|t−1 + CT Σ−1zt ;3

Pt|t ← Pt|t−1 + CT Σ−1C ;4

identity known as the Matrix Inversion Lemma (or Sherman-Morrison-Woodbury
formula).

Lemma 4.1 (Matrix Inversion Lemma).

(23) (V −1 + CT Σ−1C)−1 = V − V CT (Σ + CV CT)−1CV

Proof. It really isn’t worth your time, but if you care, just multiply both sides by
the matrix (V −1 + CT Σ−1C), then sit back and watch things cancel. �

There is a related identity which we will also use:

(24) (V −1 + CT Σ−1C)−1CT Σ−1 = V CT (CV CT + Σ)−1

Applying the above matrix identities to the updates in the Lazy form yields the
following:

Vt|t = P−1
t|t

=
(
Pt|t−1 + CT Σ−1C

)−1

=
(
V −1

t|t−1 + CT Σ−1C
)−1

,

= Vt|t−1 − Vt|t−1C
T
(
Σ + CVt|t−1C

T
)−1

CVt|t−1,

= (I −KtC)Vt|t−1,(25)

where we define Kt = Vt|t−1C
T (Σ + CVt|t−1C

T)−1 (sometimes called the Kalman
Gain). Similar matrix inversion acrobatics yields an update for mt|t, and so our
Kalman filter conditioning update is given by:

mt|t ← mt|t−1 +Kt · (zt − C ·mt|t−1),(26)

Vt|t ← (I −Kt · C) · Vt|t−1.(27)

The term (zt−C ·mt|t−1) is typically called the innovation and intuitively measures
how far a new observation deviates from the expected.

5. Conclusion

There are two important things which I have not addressed at all. One is the
smoothing problem, which takes observations at all times [1, T] into account to form
a posterior marginal at t ∈ [1, T]. There is a similar recursion (sometimes called
RTS smoothing) which solves this problem efficiently. Another important problem

8 JONATHAN HUANG

Algorithm 3: Pseudocode for the Kalman Filter Prediction step
PredictionRollup
input : mt−1|t−1, Vt−1|t−1

output: mt|t−1, Vt|t−1

mt|t−1 ← A ·mt−1|t−1 ;1

Vt|t−1 ← A · Vt−1|t−1 ·AT + Γ ;2

Algorithm 4: Pseudocode for the Kalman Filter Correction step
Condition
input : mt|t−1, Vt|t−1

output: mt|t, Vt|t
Kt ← Vt|t−1 · CT (Σ + C · Vt|t−1 · CT)−1 · C · Vt|t−1 ;1

mt|t ← mt|t−1 +Kt · (zt − C ·mt|t−1) ;2

Vt|t ← (I −Kt · C) · Vt|t−1 ;3

is how we should set the model parameters — A,Γ, C, and Σ — and there exist
some approaches for automatically learning these from data.

At the end of the day, the vanilla Kalman filter such as the one derived above
is fairly limited since things are rarely linear Gaussian. It serves primarily as an
important training example for the hundreds of variants which have been invented
to fix its shortcomings, and is an important case where we can do things exactly,
which is nice.

