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Abstract. Dirichlet distributions are commonly used as priors over propor-
tional data. In this paper, I will introduce this distribution, discuss why it is
useful, and compare implementations of 4 different methods for estimating its
parameters from observed data.

1. Introduction

The Dirichlet distribution is one that has often been turned to in Bayesian
statistical inference as a convenient prior distribution to place over proportional
data. To properly motivate its study, we will begin with a simple coin toss example,
where the task will be to find a suitable distribution P which summarizes our beliefs
about the probability that the toss will result in heads, based on all prior such
experiments.
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Figure 1. A distribution over possible probabilities of obtaining heads

We will want to convey several things via such a distribution. First, if we have
an idea of what the odds of heads are, then we will want P to reflect this. For
example, if we associate P with the experiment of flipping a penny, we would hope
that P gives strong probability to 50-50 odds. Second, we will want the distribution
to somehow reflect confidence by expressing how many coin flips we have witnessed
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in the past, the idea being that the more coin flips one has seen, the more confident
one is about how a coin must behave. In the case where we have never seen a coin
flip experiment, then P should assign uniform probability to all odds. On the other
hand, if we have seen many experiments before, then we will have a good idea of
what the odds are, and P will be strongly peaked at this value.

Figure 1 shows one possibility for P where probability density is plotted against
probability of flipping heads. Here, the prior belief is fairly certain that the odds
of obtaining heads is about 50-50. The form of the distribution for this particular
graph is given by:

p(x) ∝ x199 (1 − x)
199

and is an example of the so-called beta distribution.

2. The Dirichlet Distribution

This section will show that a generalization of the beta distribution to higher
dimensions leads to the Dirichlet. In the coin toss example, we only considered
the odds of getting heads (or tails) and placed a distribution on these odds. An
m-dimensional Dirichlet will be defined as a distribution over multinomials, which
are m-tuples p = (p1, . . . , pm) that sum to unity. For the two dimensional case,
this is just pairs (H, T ) such that H + T = 1. The space of all m-dimensional
multinomials is an (m − 1)-simplex by definition, and so the Dirichlet distribution
can also be thought of as a distribution over a simplex.

Algebraically, the distribution is given by

Dir(p|α1, . . . , αm) =
1

Z

∏

k

pαk−1
k

where Z =
Qm

k=1
Γ(αk)

Γ(
P

m
k=1

αk)
is a normalization factor. 1 There are m parameters αk

which are assumed to be positive. Figure 2 plots several examples of a three-
dimensional Dirichlet.

Yet another way to think about the Dirichlet distribution is in terms of mea-
sures. Essentially, a Dirichlet is a measure over the space of all measures over a
set of m elements. This is interesting because the idea can be extended in a rig-
orous way to the concept of Dirichlet processes, which are measures over measures
on more general sets. The Dirichlet process is, in some sense, an infinite dimen-
sional version of the Dirichlet distribution. This is a useful prior to put over mixing
weights of a Gaussian mixture model and is used for automatically picking out the
number of necessary clusters as opposed to the approach of trying to fit the data
several times to different numbers of clusters to find the best number [4].

2.1. An Intuitive Reparameterization. A simple reparameterization of
the Dirichlet is given by setting:

s =

m
∑

k=1

αk

1Γ(x) denotes the Gamma function and is defined to be:
R
∞

0
t
x−1

e
−t

dt. Integrating this
parts gives the functional definition: Γ(x + 1) = xΓ(x). Since Γ(1) = 1, we see that this function
satsifies Γ(n + 1) = n! for n ∈ N and is a generalization of the factorial to the real line.
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Figure 2

and

m =
(α1

s
, . . . ,

αm

s

)

The vector m sums to unity and hence is a point on the simplex. It turns out
to be exactly the mean of the Dirichlet distribution. s is commonly referred to
as the precision of the Dirichlet (and sometimes as the concentration parameter)
and as its name implies, controls how concentrated the distribution is around its
mean. For example, on the right hand side of Figure 2, s is small and hence yields
a diffuse distribution, whereas the center plot on Figure 2 has a large s and is hence
concentrated tightly about the mean. As will be discussed later, it is sometimes
useful to estimate mean independently of precision or vice-versa.

2.2. The Exponential Family. It is illuminating to study the Dirichlet as
a special case of a larger class of distributions called the exponential family, which
is defined to be all distributions which can be written as

p(x|η) = h(x) exp{ηT T (x) − A(η)}

where η is called the natural or canonical parameter, T (x) the sufficient statistic,
and A(η) the log normalizer. Some common distributions which belong to this
family are the Gaussian, Bernoulli and Multinomial distributions. It is easy to see
that the Dirichlet also takes this form by writing:

h(x) = 1

η = α − 1

T (x) = log p

A(η) = N

(

∑

k

log Γ(αk) − log Γ

(

∑

k

αk

))

Besides being well understood, there are several reasons why distributions
from this family are commonly employed in statistics. As shown by the Pitman-
Koopman-Darmois theorem, it is only in this family that the dimension of the
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sufficient statistic is bounded even as the number of samples goes to infinity. This
leads to efficient point estimation methods.

Bayesians are particularly indebted to the exponential family due to the fact
that if a likelihood function belongs to it, then a conjugate prior must exist. 2

Existence of such a prior simplifies computations immensely and the lack of one
often requires one to resort to numerical techniques for estimating a posterior.

A final noteworthy point is that A(η) is the cumulant generating function for
the sufficient statistic, so in particular, A′(η) is the expectation, and A′′(η) is the
variance. This implies that A is convex, which further implies that the log-likelihood
function of data drawn from these distributions is convex in η.

2.3. The Dirichlet as a Prior. The most common reason for using a Dirich-
let distribution is as a prior on the parameters to a multinomial distribution. The
multinomial distribution also happens to be a member of the exponential family,
and accordingly, has an associated conjugate prior. The multinomial distribution
is a generalization of the binomial distribution and is defined over m-tuples of
“counts”, which are just nonnegative integers:

Mult(x|θ) =
(
∑

k xk)!
∏m

k=1(xk!)

m
∏

k=1

θxk

k

where the parameters θ are probabilities of falling into one of m classes and hence
θ is a point on an (m − 1)-simplex. It is not difficult to explicitly show that the
Multinomial and Dirichlet distributions form a conjugate prior pair:

p(x|θ)p(θ) = Mult(x|θ)Dir(θ|α)

∼
m
∏

k=1

θxk

k

m
∏

k=1

θαk−1
k

∼
∏

k

θxk+αk−1

= Dir(x + α)

The last line follows by observing that the posterior is a distribution, so when
normalized, must yield an actual Dirichlet. What is very nice about this expression
is that it mathematically formalizes the intuition that the parameters to the prior,
α, can be thought of as pseudocounts. Going back to the two dimensional case, we
see that α encodes a tally of the results of all prior coin flips.

3. Estimating Parameters

Given a set of observed multinomial data, D = {p1,p2, . . . ,pN}, the parame-
ters for a Dirichlet distribution can be estimated by maximizing the log-likelihood

2A conjugate prior for a likelihood function is defined to be a prior for which posterior and
prior are of the same distribution type.
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function of the data, which is given by:

F (α) = log p(D|α) = log
∏

i

p(pi|α)

= log
∏

i

Γ (
∑

k αk)
∏

k Γ(αk)

∏

k

pαk−1
ik

= N

(

log Γ

(

∑

k

αk

)

−
∑

k

log Γ (αk) +
∑

k

(αk − 1) log p̂k

)

where log p̂k = 1
N

∑

i log pik and are the observed sufficient statistics.

Figure 3. Examples of log-likelihood functions of a three dimen-
sional Dirichlet

The following sections will provide an overview of several methods for numer-
ically maximizing this objective function, F as there is no closed form solution to
this. As discussed above, they will all use the fact that the log-likelihood is convex
in α to guarantee a unique optimum.

3.1. Gradient Ascent. The first method to try is Gradient Ascent, which
iteratively steps along positive gradient directions of F until convergence. The
gradient of the objective is given by differentiating F :

(∇F )k =
∂F

∂αk
= N

(

Ψ

(

∑

k

αk

)

− Ψ(αk) + log p̂k

)

where Ψ = d log Γ(x)
dx is the digamma function. There is no analytic expression for

doing a line search; one can always continue to step along a constant fraction of the
gradient, but care must be taken that the constraints of the problem be enforced
(e.g. the αk must always be positive.)

3.2. A Fixed Point Iteration. Minka [1] provides a convergent fixed point
iteration technique for estimating parameters. The idea behind this is to guess an
initial α, find a function that bounds F from below which is tight at α, then to
optimize this function to arrive at a new guess at α.
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There are many inequalities associated to the ratio Γ(x+β)
Γ(x) which have been

extensively studied by many mathematicians ([5],[6],[8]). One commonly cited one
is:

Γ(x) ≥ Γ(x̂) exp((x − x̂)Ψ(x̂))

which leads to a lower bound on the log likelihood, F (α):

F (α) ≥ N

((

∑

k

αk

)

Ψ

(

∑

k

αold
k

)

−
∑

k

log Γ(αk) +
∑

k

αk log p̂k + C

)

where C is a constant with respect to α. Now this expression is maximized by
setting the gradient to zero and solving for α. The update step is given by:

αnew
k = Ψ−1

(

Ψ

(

∑

k

αold
k

)

+ log p̂k

)

The digamma function Ψ can be inverted efficiently by using a Newton-Raphson
update procedure to solve Ψ(x) = y.

3.3. The Newton-Raphson Method. Newton-Raphson provides a quadrat-
ically converging method for parameter estimation. The general update rule can
be written as:

αnew = αold − H−1(F ) · ∇F

where H is the Hessian matrix.
For this particular log likelihood function, there is no problem applying Newton-

Raphson to high dimensional data, because the inverse of the Hessian matrix can
be computed in linear time. In particular, the Hessian of F is the sum of a matrix
whose elements are all the same and a diagonal matrix. It is given by:

∂2F

∂α2
k

= N

(

Ψ′

(

∑

k

αk

)

− Ψ′ (αk)

)

∂2F

∂αj∂αk
= NΨ′

(

∑

k

αk

)

We can rewrite this as

H = Q + c11T

qjk = −NΨ′(αk)δ(j − k)

c = NΨ′

(

∑

k

αk

)
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To invert the Hessian, we observe that for any invertible matrix Q and non-zero
scalar c:

(

Q + c11T
)

(

Q−1 −
Q−111T Q−1

1/c + 1T Q−11

)

= QQ−1 −
QQ−111T Q−1

1/c + 1T Q−11
+ c11T Q−1

−
c11T Q−111T Q−1

1/c + 1T Q−11

= QQ−1 +
1

1/c + 1T Q−11

(

−11T Q−1 + 11T Q−1

+c11T Q−1(1T Q−11) − c1(1T Q−11)1T Q−1
)

= 1

Since Q is diagonal, Q−1 is easily computed and the update rule for Newton-
Raphson can be rewritten in terms of each coordinate:

αnew
k = αold

k −
(∇F )k − b

qkk

where b = Q−111T Q−1

1/c+1T Q−11 =
P

j
(∇F )j/qjj

1/z+
P

j
1/qjj

3.4. Estimating Mean and Precision Separately. The fourth way for
estimating a Dirichlet is to estimate mean and precision separately leaving the
other fixed. Sometimes it may be enough to just know one of these parameters,
but if all of them are desired, then one can alternate between estimating mean and
precision (as would be done in a coordinate ascent method) until convergence.

3.4.1. Mean. First consider estimating the mean m with a fixed precision s.
The likelihood for m is

p(D|m) ∝

(

exp(smk log p̂k)

Γ(smk)

)N

We now reparametrize this by an unconstrained vector z which is defined by
zkP
k zk

and the log-likelihood function is now rewritten as:

log p(D|m) = N
∑

k

[

zk
∑

k zk
log p̂k − log Γ

(

s
zk

∑

k zk

)]

Differentiate to obtain a gradient which can be used in a gradient ascent update
rule:

d log p(D|m)

dzi
= N

∑

k

[

∑

k zk − zi

(
∑

k zk)
2 s log p̂k − s

(

∑

k zk − zi

(
∑

k zk)
2

)

Ψ

(

s
zk

∑

k zk

)

]

=
Ns
∑

k zk

(

log p̂k − Ψ(smk) −
∑

k

mk(log p̂k − Ψ(smk))

)

An alternative would be the following fixed point update which converges very
rapidly:

Ψ(αk) = log p̂k −
∑

k

mold
k (log p̂k − Ψ(smold

k ))

mnew
k =

αk
∑

k αk
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3.4.2. Precision. We now estimate the precision for a fixed mean vector. The
appropriate likelihood function here is:

p(D|s) ∝

(

Γ(s) exp (s
∑

k mk log p̂k)
∏

k Γ(smk)

)N

And the first and second derivatives of the log-likelihood are given by:

d log p(D|s)

ds
= N

(

Ψ(s) −
∑

k

mk (Ψ(smk) + log p̂k)

)

d2 log p(D|s)

ds2
= N

(

Ψ′(s) −
∑

k

m2
kΨ′(smk)

)

[2] provides a Generalized Newton iteration for maximizing this function, 3

which yields an update rule which looks a lot like a Newton-Raphson update, but
has faster convergence:

1

snew
=

1

s
+

1

s2

(

d2 log p(D|s)

ds2

)−1(
d log p(D|s)

ds

)

4. Results

To compare the four methods, I implemented each one in C along with routines
for random sampling from a Dirichlet. 4

To first test that the methods worked, 100,000 multinomials were drawn from a
Dirichlet with known parameters, and the output of each method was compared to
the ground truth. To compare speeds, I repeated this process with 10000 multino-
mials, 50 trials for each method and recorded averaged times to run this test (sum-
marized in the figure). The algorithms were deemded to have converged when the
step sizes dipped below 10−9. They show that the Newton-Raphson method and the
method of alternating mean/precision estimations were the fastest on average, that
the methods scale approximately linearly according to dimension and precision.

A nontrivial issue in implementation is that of enforcing the inequality con-
straints that αk > 0 ∀k. With the fixed point iteration, this was never an issue,
but the other three methods were prone to being carried out of bounds and had
to be brought back inside, the worst of the three being Newton-Raphson. In my
code, I simply check for this at each iteration, but another idea for future work will
be to place a log barrier function at these functions [9]. For several of the meth-
ods, there are several clever methods for initalizing the iteration by approximating
the log likelihood by a simpler function. Using these often alleviates the issues of
outstepping the bounds since they encourage the algorithms to converge in fewer
steps.

3The idea behind the Newton method is to approximate a function locally by a quadratic by
matching first and second derivatives, and optimizing this quadratic instead. In the generalized
version of Newton, the idea is to approximate by a simpler function (not necessarily a quadratic)
by matching the first and second derivatives and optimizing said simpler function.

4Sampling from an m-dimensional Dirichlet amounts to sampling from m different Gamma
distributions with parameters depending on each αk and then projecting the vector of these
concatenated samples onto the simplex. In my implementation, I use a rejection sampling method
for the Gamma distribution [7].
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Figure 4. Times to estimate 50 Dirichlets plotted against dimen-
sion (a) and precision (b).

5. Conclusions

The example that motivated this project comes from latent semantic analysis in
text modeling. In a commonly cited model, the Latent Dirichlet Allocation model
[3], a Dirichlet prior is incorporated into a generative model for a text corpus, where
every multinomial drawn from it represents how a document is mixed in terms of
topics. For example, a document might spend 1/3 of its words discussing statistics,
1/2 on numerical methods, and 1/6 on algebraic topology

(

1
3 + 1

2 + 1
6 = 1

)

. For
a large number of possible topics, fast maximum likelihood methods which work
well for high dimensional data are essential, and I reviewed some alternatives to
Gradient Ascent in this paper. Due to several important properties such as having
sufficient statistics of bounded dimension, and a convex log-likelihood function this
computation can be made quite efficient.
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